
Automatic Puzzle Level Generation:
A General Approach using a Description Language

Ahmed Khalifa and Magda Fayek
Computer Engineering Department

Faculty of Engineering, Cairo University
Cairo University Road, Giza, Egypt

amidos2002@hotmail.com, magdafayek@ieee.org

Abstract

In this paper, we present a general technique to generate and
evaluate puzzle levels made by Puzzle Script. Puzzle Script is
a videogame description language - created by Stephen Lavelle
- for scripting puzzle games. We propose a system to help in
generating levels for Puzzle Script without any restriction on the
current game rules. Two different approaches are used with a
trade off between speed (Constructive approach) and playability
(Genetic approach). These two approaches use a level evaluator
that calculates the scores of the generated levels based on their
playability and challenge. The generated levels are assessed by
human players statistically, and the results show that the con-
structive approach is capable of generating playable levels up to
90%, while genetic approach can reach up to 100%. The results
also show a high correlation between the system scores and the
human scores.

Introduction
During the early days of video games, games were created
by few people in their spare time. Most of the time was
spent in programming the game, while a small portion was
dedicated for graphics, sounds, and music because of the
technical limitations of the devices at that time. Although
these limitations are no more available, game production still
takes long time. Most of this time is spent on creating content
for the game (graphics, music, sounds, levels, and ...etc) (AAA
Games Budget). For example, creating graphics for a huge
main stream game may take hundreds of artists working for a
year or two. That is why the production cost of a huge game
reaches millions of dollars (Video Game Cost).

This huge production cost is one of the reasons for using
Procedural Content Generation (PCG). PCG means generating
game content using a computer. It was first developed due to
technical limitations (small disk space) and the need to provide
a huge amount of content (Akalabeth). Although technical
difficulties became history and storage is no longer a problem,
PCG is still one of the hot topics in Video Games Industry and
Research. PCG not only reduces development time and cost,
but it also helps developers understand the process of creating
game content. PCG has been used to generate different game
aspects like Textures, Sounds, Music, Levels, Rules, and ...etc.

Level Generation is used to introduce a huge amount of
levels that humans can not generate manually in a reasonable
amount of time. Level Generation has always been done for a
specific game using many specific game hacks to improve the
output result. These hacks cause the output levels to follow
certain guidelines which limit the amount of possible levels.

On the other hand these guidelines ensure that output levels
are all playable (game goal is reachable) and satisfactory for
all players (Generate Everything).

This research is the first step in general level generation and
evaluation. It proposes a system for generating playable and
challenging levels without depending on any specific game re-
strictions or hacks. It also proposes a group of heuristic mea-
sures to compute the quality of generated levels regardless of
the game rules.

Background
We can not generate general game levels without having a
methodology to describe the games. Video Game Description
Language (VGDL) was originally invented at Stanford Uni-
versity to advance the General Video Game Playing (GVGP)
research (Levine et al.). Puzzle Script (PS) is a VGDL, created
by Stephan Lavelle, to help game designers and developers
create puzzle games (PS). Games generated by PS are time
stepped games similar to Sokoban (Sokoban).

A PS file starts with some metadata such as game name, au-
thor name, and website. It is then divided into 7 sections; ob-
jects, legend, sounds, collision layers, rules, win conditions,
and levels. In this work, we focus on rules, win conditions, and
levels. Rules are a set of production rules that govern how the
game will be played. For example,

[> Player | Crate] -> [> Player | > Crate]

means if there is a Player and a Crate beside each other, and
the Player moves towards the Crate, then both the Player and
the Crate will move in the same direction. Win conditions are
group of rules that identify when the level should end. Lev-
els are 2D matrices showing the current configuration for each
game level using objects identified in the objects section.

Literature Review
As far as we know, most of the previous work in level
generation is done for specific games. In this section we will
survey some of the previous work in level generation. One
of the earliest research in Puzzle Games was by Murase et
al. (Murase, Matsubara, and Hiraga 1996). Murase et al.
work focuses on generating well designed solvable levels for
Sokoban (Sokoban). They use Breadth First Search (BFS) to
check playability. Results show that for every 500 generated
levels only 14 are considered as good levels. These levels
are characterized by having a short solution sequence. Taylor
and Parberry (Taylor and Parberry 2011) followed Yoshio
Murase et al. work (Murase, Matsubara, and Hiraga 1996) to

improve generated level quality. Their system places the crates
at the farthest possible location from the target using a similar
algorithm to BFS. The generated levels do not have from
the problem of short solution sequences presented in Yoshio
Murase et al. work (Murase, Matsubara, and Hiraga 1996).

Rychnovsky work (PCG in Fruit Dating) focused on gen-
erating levels for his new game Fruit Dating (Fruit Dating).
Rychnovsky developed a level editor that can be used to
generate new levels or test playability of certain level. He
generated new levels by first generating a level layout and then
placing game objects in certain locations based on some prior
game knowledge. After that he checked for a solution using a
similar algorithm to BFS. The technique does not take more
than a couple of minutes to generate a level, however there is
no control over the difficulty of the generated levels.

Shaker et al. (Shaker et al. 2013) worked on generating
levels for physics based puzzle games. They applied their
technique on Cut The Rope (CTR) (CTR). Shaker et al. used
Grammar Evolution (GE) technique to generate levels for
CTR. The grammar is designed to ensure that every game ob-
ject appears at least one time. The fitness function depends on
some heuristic measures based on prior knowledge about the
game and the result of several playouts using a random player.
Shaker et al. generated 100 playable levels and analyzed
them according to some metrics such as frequency, density,
and ...etc. Shaker et al. (Shaker, Shaker, and Togelius 2013)
conducted their research on CTR to improve generated level
quality. They replaced the random player with an intelligent
one. The generated levels became far more diverse because
the random player discards some potential levels in the search
space.

Shaker et al. (Shaker et al. 2015) introduced a new
generation technique named Progressive Approach. It can
be used on any kind of games to reduce the generation time.
The Progressive Approach starts by using GE to generate a
time-line of game events, then an intelligent player is used to
map and evaluate the time-line to a playable level. Shaker et
al. tested the new technique on CTR and compared its results
with their previous work (Shaker, Shaker, and Togelius 2013).
The results indicated a huge decrease in generation time, but
the quality of the levels depended on the mapping process of
the intelligent player.

Smith et al. (Smith et al. 2012) worked on generating puzzle
levels for Refraction (Refraction). The system starts by gener-
ating a solution outline, followed by translating the outline into
a geometric layout, then testing the generated level for playa-
bility. Smith et al. implemented the system using two differ-
ent ways (Algorithmic approach and Answer Set Programming
(ASP)). Results showed that ASP is faster than Algorithmic
approach, while Algorithmic approach produced more diverse
levels than ASP.

Methodology
Level Generation is not an easy task specially when the game
rules are not known before generation. Although some of the
previous research suggested a general technique to generate
levels, it is still based on designing a game specific fitness
function. Our approach relies on the understanding of the
current game rules and some prior knowledge about Puzzle
Script language. Figure 1 shows a high level block diagram of

the system.

The system starts by analyzing the current game rules using a
Rule Analyzer. The output of the Rule Analyzer and the Level
Outlines are fed to a Level Generator. The Level Generator
generates a set of initial level layouts using Genetic Algorithm
(GA) or Constructive Algorithm (CA). The generated levels are
subjected to a Level Evaluator. The Level Evaluator measures
their playability and challenge using an automated player. The
following subsections describe each of these steps in details.

Rule Analyzer
The Rule Analyzer is the first module in our system. It analyzes
game rules and extracts useful information about each object.
The extracted information is fed to the Level Generator and the
Level Evaluator. The extracted information for each object is:
• Type: Object type depends on its presence in the Puzzle

Script file. There are 4 different types:
– Rule Object: Any object that appears in a rule is defined

as a rule object.
– Player Object: It is the main game object and it is defined

by name "Player" in the Puzzle Script.
– Winning Object: An object appearing in the winning con-

dition.
– Solid Object: Any object that does not appear in any rule

but are presented on the same collision layer with a Rule
Object.

• Subtype: each Rule Object is assigned a Subtype based on
its presence in the rules. These subtypes are:
– Critical Object: is an object that has appeared with the

Player object and one of the Winning Objects in the rules.
– Normal Object: same as the Critical Object but it appears

with either the Player or one of the Winning Objects.
– Useless Object: is an object that neither appears with the

Player Object nor the Winning Objects in any rule.
• Priority: It reflects the number of times each object appears

in the rules.
• Behaviors: Behaviors are defined by comparing the left hand

side and the right hand side for every object in each rule.
Every object can have one or more behavior. There are 4
kinds of behaviors:
– Move: The object on the left hand side has different move-

ment from the right hand side.
– Teleport: The object on the left hand side has different

location in the rule from the right hand side.
– Create: The number of times the object appears on the

left hand side is less than that on the right hand side.
– Destroy: The number of times the object appears on the

left hand side is more than that on the right hand side.
• Minimum Required Number: It is the maximum number of

times for an object to appear in the left hand side of game
rules. This number is different for objects with Create be-
havior where it reflects the minimum number of times for
the object to appear in the create rules.

• Relations: It is a connected graph for all objects that appears
in the rules and the winning conditions.

Level Generator
The Level Generator is responsible for creating a level in the
best possible way. Two approaches were used to generate lev-
els. The following subsections discuss each one of them.

Figure 1: High level system block diagram for Level Generation

Constructive Approach The Constructive Approach uses
information from the Rule Analyzer to modify the Level
Outlines. In this approach, several levels are generated using
a certain algorithm. After the generation ends, only the
best levels are selected. A pseudo code for the algorithm is
presented in Algorithm 1.

Algorithm 1: Pseudo algorithm for the Constructive Ap-
proach
Data: level outline, rule analysis
Result: modified level outline

numberObjects = Get the number of objects for each
object type;

levelOutline = Insert Solid Objects in the level outline;
levelOutline = Insert Winning Objects in the level outline;
levelOutline = Insert Player Object in the level outline;
levelOutline = Insert Critical Objects in the level outline;
levelOutline = Insert Rule Objects in the level outline;

return levelOutline;

The algorithm consists of two main parts. The first part is
responsible for determining the amount of objects that should
be presented in the current level outline. Each object type con-
tributes by a percentage equal to its minimum required number
to make sure that all rules can be applied. Winning objects have
an equal amount of objects except if any of these objects have
a Create behavior. The second part is responsible for inserting
game objects in the most suitable location which is calculated
based on the inserted object features. If the object has a Move
behavior, it should be inserted at spots with the most free loca-
tions around it. Otherwise free random location is okay. The
second winning object is inserted on the same place of the first
one if No winning condition is presented. All the critical ob-
jects are inserted in the level at least one time. Normal rule
objects are selected based on their Priority feature.

Genetic Approach This method uses GA to evolve level
outlines to playable levels. Elitism is used to ensure that the
best levels are preserved.

Chromosome Representation: In this technique levels
are represented as 2D matrix. Each value represents all the
objects at that location.

Genetic Operators: we use Crossover and Mutation to
ensure better levels in the following generations. In One point
crossover, we choose a point and swaps all rows before it.

Mutation changes any randomly selected position using the
following mutators:

• Creating an object: replace an empty level position by a ran-
dom object.

• Deleting an object: delete a random level object.

• Changing object position: swap a randomly chosen empty
position by a non empty one.

Each of these three mutators has a different probability. The
creation and the deletion mutators have a lower probability
than the changing mutator.

Initial Population: we use three different techniques to
generate an initial population for the GA. These techniques
are:

• Random Initialization: The population is initialized as mu-
tated versions of the empty level outline.

• Constructive Initialization: The population is initialized us-
ing the Constructive Approach algorithm.

• Hybrid Approach: The population is initialized as a mixture
between the Random Initialization, the Constructive Initial-
ization, and a mutated version of the Constructive Initializa-
tion.

Level Evaluator
Level Evaluator is responsible for evaluating the generated
levels. The evaluation takes place by measuring the level’s
playability and some heuristic measures. Level’s playability
is achieved by using an automated player which will be dis-
cussed later. Heuristic measures ensure that the level’s solution
is challenging.

Automated Player Our Level Evaluator uses a modified
version of the BestFS Algorithm as the automated player.
BestFS Algorithm was introduced in Lim and Harrell work
(Lim and Harrell 2014). BestFS is similar to BFS algorithm
but instead of exploring states sequentially, it sorts them
according to a fitness score. This causes the algorithm to
explore more important nodes first, helping it to reach the
solution faster.

In any proper game, rules must be applied before achieving
the winning condition. Based on that fact, we extended Lim
and Harrell fitness function to measure the distance between
rule objects in the left hand side of each rule. For example,
Figure 2 shows a level from a game called LavaGame with the
new metric colored. LavaGame is a puzzle game where the
goal is to make the player reaches the exit. The path towards
the exit is usually stuck by lava which can be destroyed by

pushing a crate over it. The player moves crates towards the
lava to unblock his exit path. This aim is somehow explained
in the game rules, so by using the output of the Rule Analyzer,
we can know which objects need to be closer.

Figure 2: Example level from LavaGame showing the new met-
ric for the automated player

Heuristic Measures Heuristic measures are calculated using
a weighted function of six measures.

• Playing Score (Pscore): Playing score is used to ensure
level’s playability. Based on the work by Nielsen et al.
(Nielsen et al. 2015), a float value is assigned for how much
the level is near the solution from the initial state. The Play-
ing Score can be expressed by the following equation:

Pscore = Splay − Snothing

where Splay is the automated player score and Snothing is
the initial level score. The automated player calculates these
scores by measuring the average distance between winning
objects in the calculated state.

• Solution Length Score (Lscore): Since big levels need long
solutions, a score is given to the ratio between the solution
length and the level area. We analyzed 40 hand crafted lev-
els with different area from 5 different games. A histogram
is plotted for the ratio and shown in Figure 3. The his-
togram approximately follows a Normal Distribution with
µ = 1.221 and σ = 0.461. Based on that, Lscore is ex-
pressed by the following equation:

Lscore = Normal(
L

A
, 1.221, 0.461)

where Normal(ratio, µ, σ) is a normal distribution func-
tion, L is the solution length, and A is the level area.

Figure 3: Histogram for the ratio between the solution length
and the level area

• Object Number Score (Nscore): The Object Number Score
is calculated by the following equation:

Nscore = 0.4 ∗Nrule + 0.3 ∗Nplayer + 0.3 ∗Nwinning

– Number of Rule Objects (Nrule): represents the number
of objects appearing in the level. An object is considered
to exists in a level if the number of its occurrence greater
than or equal to its minimum required number. This con-
strain ensures the possibility of applying every rule.

– Number of Players (Nplayer): represents the number of
players in the level. Generated levels should have only
one player.

– Number of Winning Objects (Nwinning): represents the
number of winning objects in the level. This score ensures
the number of the winning objects are equal, unless one of
the winning objects have a Create behavior.

• Box Line Score (Bscore): It is similar to Taylor and Parberry
metric (Taylor and Parberry 2011) used in finding the far-
thest state. This metric calculates the number of unrepeated
moves found in the solution and divide it by the solution
length. The following equation represents it:

Bscore =
Lunique

L

where Lunique is the number of unrepeated moves in the so-
lution and L is the solution length.

• Applied Rule Score (Rscore): The ratio between the num-
ber of applied rules to the solution length is used to indicate
good level design. To find the best ratio, we analyzed 40
hand crafted levels from 5 different games and a histogram
is plotted in Figure 4. The histogram approximately follows
Normal Distribution with µ = 0.417 and σ = 0.128. Based
on that Rscore can be expressed by the following equation:

Rscore = Normal(
Rapp ±Rnone

L
, 0.417, 0.128)

where Normal(ratio, µ, σ) is a normal distribution func-
tion, Rapp is the number of applied rules, Rnone is the num-
ber of applied rules without any previous actions, and L is
the solution length.

Figure 4: Histogram for the number of rules applied to the so-
lution length

• Exploration Score (Escore): The increase in the number of
explored states by the automated player means that the cur-
rent level doesn’t have a straight forward solution. The fol-
lowing equation expressed this idea:

Escore =


0.75 +

Nexp

Nmax
solution exists

0.5 no solution, Nexp = Nmax

0 no solution, Nexp < Nmax

where Nexp is the number of explored states and Nmax is
the maximum number of states the automated player can ex-
plore.

Results and Evaluation
In the first subsection, we introduce the games used in testing
our system. In the second section, we analyze the results of the
new automated player and compare its results with Lim and
Harrell automated player (Lim and Harrell 2014). In the third
subsection, we analyze the results of the level generation tech-
niques and compare them with human feedbacks. In the last
section, we analyze each level generation technique and com-
pare them with each other.

Tested Games
We test our system against five games. The five games are com-
pletely different to cover different object behaviors and differ-
ent winning conditions. These games are:
• Sokoban: The goal of the game is to place every single crate

over a certain position. The player can push crates to achieve
that goal.

• LavaGame: The goal of the game is to reach the exit. The
path towards the exit is always blocked by lava. The player
should push crates over lava to clear his way.

• BlockFaker: The goal of the game is to reach the exit. The
path towards the exit is always blocked by lots of crates. The
player should push these crates to align them vertically or
horizontally. Every three aligned crates are destroyed which
clear the path towards the exit.

• GemGame: The goal of the game is to place at least one gem
over one of several locations. The player can create gems by
pushing crates. Every three aligned crates are replaced with
a single gem in place of the middle crate.

• DestroyGame: The goal of the game is to clear every single
gem. Gems can be destroyed when they are aligned with
two other crates vertically or horizontally. The player should
push crates to reach that goal.

Automated Player
Forty handcrafted levels of each of the five games are used to
compare the new player with the original one. Levels are de-
signed with different sizes and ideas to cover different design
aspects. Both players play all the forty levels and reports the
solution length and the number of states explored. Figure 5
shows the average number of states each player explores in
each game to reach the goal. The new player outperforms the
original player in Sokoban and GemGame, but they are almost
similar in the rest of the games. The new player performs
badly in DestroyGame and LavaGame due to the presence
of the Destroy behavior as the core mechanic of the game.
Removing level objects sometimes has negative effect on level
score. This effect leads the new player to explore more states
before exploring states with a Destroy behavior.

Figure 6 shows the average solution length for each game
for both players. The new player produces slightly shorter so-
lutions than the original player. Comparing both Figure 5 and
Figure 6 a correlation can be noticed between both of them ex-
cept for Sokoban. Sokoban does not follow the same pattern

Figure 5: Comparison between the number of explored states
for different automated players

due to being an abstract game. Sokoban has a very small num-
ber of objects and just one rule. This abstraction is the main
reason for both players reaching the goal in almost the same
amount of steps.

Figure 6: Comparison between the average solution length for
different automated players

Level Generation
This section presents the results of the two level generation
techniques. The new automated player is used with a limit of
5000 explored states to ensure fast execution. Level generation
is tested against eight different level layouts. Figure 7 shows
that the eight layouts cover different sizes and different inner
structures.

Figure 7: Level layouts used in level generation

The generated levels are published on our website to collect
human feedback using Google forms.1 Each generated level
gets a score out of four where four is completely amazing
while zero is completely unplayable. Beside the generated
levels, each game has eight human designed levels to work as a
benchmark for grading the generated ones. We divide the feed-
back form into 20 short forms. Each form covers 16 generated
level for a certain game using a certain technique. These forms

1http://www.amidos-games.com/puzzlescript-pcg/

http://www.amidos-games.com/puzzlescript-pcg/

were sent to Cairo University Computer Engineering students
and Procedural Content Generation group on Google.2 Around
157 surveys are reported for the whole twenty forms.

As shown in Figure 8, the correlation between system scores
and human scores (for all games and levels) is not very high.
This may be attributed to the small number of collected data
points, in addition to the fact there is no concise definition for
good level.

Figure 8: Correlation between automated player scores and hu-
man scores for all games

Constructive Approach For each level layout, we generate
one hundred levels using the CA. After that we evaluate each
one of them and select the best two. Out of the 80 selected
levels, the system only reports 85% as playable. The result
of human players testing conducts that 90% of the levels are
playable where the 5% difference are very difficult levels to
be solved by the automated player. Figure 9 shows a group
of generated levels using the Constructive Approach. Most of
these levels have similar layouts due to the constraints in the
algorithm which ensure playability. For example: the number
of winning objects are equal, the number of objects are equal
in all levels with the same area, and ...etc. Removing any of
these constraints drops levels’ playability dramatically.

Figure 9: Examples of the generated levels using Constructive
Approach

Genetic Approach For each level layout, we use GA for 20
generations with a population equal to 50 chromosomes. The
crossover rate is around 70% and the mutation rate is around
10%. GA is applied on each level layout and the best two chro-
mosomes from each layout are selected. Elitism is used with
probability of 2%.

• Random Initialization: Only 75% of the 80 selected levels
are playable although the automated player reported only
73.75%.

2http://groups.google.com/forum/#!forum/proceduralcontent

• Constructive Initialization: Using CA to initialize the GA
increases the overall level’s playability from 90% to reach
100%. Here, the GA is effectively tuning the unplayable
levels generated by the constructive approach.

• Hybrid Initialization: Results 100% playable as well, how-
ever, levels have more diversity in this case.

(a) Random Intialization

(b) Constructive Intialization

(c) Hybrid Intialization

Figure 10: Average fitness of GA for different techniques

Figure 10 shows the increase of fitness scores across
generations. Its clear that the fitness scores increase with gen-
erations from the start except for Constructive Initialization.
In Constructive Initialization, the score drops at the beginning
and then starts to increase. The reason behind this drop is
using CA to initialize the initial population which decreases
the diversity of the chromosomes at the beginning.

Figure 11 shows a group of the generated levels using the
Genetic Approach. Constructive Initialization results are very
similar to the Constructive Approach results, while both Ran-
dom Initialization and Hybrid Initialization are different. It is
clear that Random Initialization needs more generations to find
more difficult levels than the current generated ones.

http://groups.google.com/forum/#!forum/proceduralcontent

(a) Random Intialization

(b) Constructive Intialization

(c) Hybrid Intialization

Figure 11: Examples of the generated levels using Genetic Ap-
proach

Fitness Comparison Figure 12 shows a comparison between
the max fitness of all the presented techniques for each game.
The GA with Constructive Initialization has the highest score
in almost all games, followed by the GA with Hybrid Initial-
ization which is almost the same as the Constructive Approach.
The worst one is the GA with Random Initialization as it needs
more generations to find good playable levels. Sokoban scores
are almost similar with all techniques due to the simplicity of
the game rules and the small number of objects needed to gen-
erate a playable level.

Figure 12: Max fitness of all proposed techniques for all games

Conclusion and Future Work
This research presented a system to generate general levels for
Puzzle Script. Also, it proposed several metrics to evaluate
puzzle levels based on their solution sequence.

The proposed system generates levels regardless of the cur-
rent game rules. It uses two different techniques (Constructive

and Genetic Approach). The Constructive Approach resulted
in 90% playable levels which was enhanced in the Genetic
Approach to reach 100% at the cost of extra running time.
Genetic Approach uses GA with three different initialization
methods (Random Initialization, Constructive Initialization,
and Hybrid Initialization). Random Initialization produces
levels with different configuration from the Constructive
Approach, but with low playability equals to 75%. Construc-
tive Initialization produces levels with playability reaching
100%, but with similar structure to the Constructive Approach.
Hybrid Initialization is similar to Constructive Initialization in
terms of playability and it finds more diverse levels as well,
but it needs more time to get better fitness scores than what
Constructive Initialization needs.

The generated levels were tested using human players and
our automated player. Comparing human scores with system
scores shows a good correlation. This good correlation is a
good indicator that the proposed metrics can actually measure
the level’s playability and challenge.

This work is a first step in general level generation field.
There is a plenty to be done to expand and enhance it. As for
future work, we aim to:

• analyze the effect of each metric on the generation tech-
niques.

• utilize the metrics to analyze the search space for the gener-
ation techniques.

• test different techniques rather than plain GA to increase the
level diversity like in Sorenson and Pasquier work (Sorenson
and Pasquier 2010).

• improve the time and the quality of the automated player to
decrease the generation time.

• generate levels with a specific difficulty.

• generate levels with a specific solution.

Acknowledgments
I would like to express my deepest gratitude to Micheal Cook.
His work on ANGELINA was my main inspiration to start
working on PCG. I would like to thank my supervisor Prof.
Magda Fayek for all the support, guidance, and extreme pa-
tience she provides. Without her support this work would not
have seen the light. Also Thanks to all my friends for the sup-
port and the huge help in collecting results feedback.

References
[AAA Games Budget] What is the budget break-
down of aaa games? http://www.quora.com/
What-is-the-budget-breakdown-of-AAA-games. [Accessed:
2015-01-21].

[Akalabeth] Akalabeth. http://www.filfre.net/2011/12/
akalabeth/. [Accessed: 2015-01-18].

[CTR] Cut the rope. http://en.wikipedia.org/wiki/Cut_the_
Rope. [Accessed: 2015-03-17].

[Fruit Dating] Fruit dating. https://www.behance.net/gallery/
13640411/Fruit-Dating-game. [Accessed: 2015-03-17].

[Generate Everything] Generate everything. http://vimeo.com/
92623463. [Accessed: 2015-01-19].

[Levine et al. 2013] Levine, J.; Congdon, C. B.; Ebner, M.;
Kendall, G.; Lucas, S. M.; Miikkulainen, R.; Schaul, T.; and

http://www.quora.com/What-is-the-budget-breakdown-of-AAA-games
http://www.quora.com/What-is-the-budget-breakdown-of-AAA-games
http://www.filfre.net/2011/12/akalabeth/
http://www.filfre.net/2011/12/akalabeth/
http://en.wikipedia.org/wiki/Cut_the_Rope
http://en.wikipedia.org/wiki/Cut_the_Rope
https://www.behance.net/gallery/13640411/Fruit-Dating-game
https://www.behance.net/gallery/13640411/Fruit-Dating-game
http://vimeo.com/92623463
http://vimeo.com/92623463

Thompson, T. 2013. General Video Game Playing. In Ar-
tificial and Computational Intelligence in Games, volume 6 of
Dagstuhl Follow-Ups. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. 77–83.

[Lim and Harrell 2014] Lim, C.-U., and Harrell, D. F. 2014.
An approach to general videogame evaluation and automatic
generation using a description language. In Proceedings of the
IEEE Conference on Computational Intelligence and Games,
286–293. IEEE.

[Murase, Matsubara, and Hiraga 1996] Murase, Y.; Matsubara,
H.; and Hiraga, Y. 1996. Automatic making of sokoban prob-
lems. In PRICAI’96: Topics in Artificial Intelligence, 4th Pa-
cific Rim International Conference on Artificial Intelligence,
Cairns, Australia, August 26-30, 1996, Proceedings, 592–600.

[Nielsen et al. 2015] Nielsen, T. S.; Barros, G. A. B.; Togelius,
J.; and Nelson, M. J. 2015. General video game evaluation
using relative algorithm performance profiles. In Proceedings
of the 18th Conference on Applications of Evolutionary Com-
putation.

[PCG in Fruit Dating] Procedural generation of
puzzle game levels. http://www.gamedev.net/
page/resources/_/technical/game-programming/
procedural-generation-of-puzzle-game-levels-r3862. [Ac-
cessed: 2015-02-24].

[PS] Puzzle script. http://www.puzzlescript.net/. [Accessed:
2015-01-19].

[Refraction] Refraction. http://centerforgamescience.org/
portfolio/refraction/. [Accessed: 2015-04-04].

[Shaker et al. 2013] Shaker, M.; Sarhan, M. H.; Naameh, O. A.;
Shaker, N.; and Togelius, J. 2013. Automatic generation and
analysis of physics-based puzzle games. In Proceedings of the
IEEE Conference on Computational Intelligence and Games,
1–8. IEEE.

[Shaker et al. 2015] Shaker, M.; Shaker, N.; Togelius, J.; and
Abou Zleikha, M. 2015. A progressive approach to content
generation. In EvoGames: Applications of Evolutionary Com-
putation.

[Shaker, Shaker, and Togelius 2013] Shaker, N.; Shaker, M.;
and Togelius, J. 2013. Evolving playable content for cut the
rope through a simulation-based approach. In Sukthankar, G.,
and Horswill, I., eds., Artificial Intelligence and Interactive
Digital Entertainment. AAAI.

[Smith et al. 2012] Smith, A. M.; Andersen, E.; Mateas, M.;
and Popovic, Z. 2012. A case study of expressively constrain-
able level design automation tools for a puzzle game. In Foun-
dations of Digital Games, 156–163. ACM.

[Sokoban] Sokoban. http://en.wikipedia.org/wiki/Sokoban.
[Accessed: 2015-01-19].

[Sorenson and Pasquier 2010] Sorenson, N., and Pasquier, P.
2010. Towards a generic framework for automated video game
level creation. 131–140. Springer.

[Taylor and Parberry 2011] Taylor, J., and Parberry, I. 2011.
Procedural generation of Sokoban levels. In Proceedings of
the International North American Conference on Intelligent
Games and Simulation, 5–12. EUROSIS.

[Video Game Cost] How much does it cost to
make a big video game? http://kotaku.com/
how-much-does-it-cost-to-make-a-big-video-game-1501413649.
[Accessed: 2015-01-20].

http://www.gamedev.net/page/resources/_/technical/game-programming/procedural-generation-of-puzzle-game-levels-r3862
http://www.gamedev.net/page/resources/_/technical/game-programming/procedural-generation-of-puzzle-game-levels-r3862
http://www.gamedev.net/page/resources/_/technical/game-programming/procedural-generation-of-puzzle-game-levels-r3862
http://www.puzzlescript.net/
http://centerforgamescience.org/portfolio/refraction/
http://centerforgamescience.org/portfolio/refraction/
http://en.wikipedia.org/wiki/Sokoban
http://kotaku.com/how-much-does-it-cost-to-make-a-big-video-game-1501413649
http://kotaku.com/how-much-does-it-cost-to-make-a-big-video-game-1501413649

	Introduction
	Background
	Literature Review
	Methodology
	Rule Analyzer
	Level Generator
	Level Evaluator

	Results and Evaluation
	Tested Games
	Automated Player
	Level Generation

	Conclusion and Future Work
	Acknowledgments

