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Abstract. At the core of the most popular version of the Monte Carlo Tree
Search (MCTS) algorithm is the UCB1 (Upper Confidence Bound) equation. This
equation decides which node to explore next, and therefore shapes the behavior of
the search process. If the UCB1 equation is replaced with another equation, the
behavior of the MCTS algorithm changes, which might increase its performance
on certain problems (and decrease it on others). In this paper, we use genetic
programming to evolve replacements to the UCB1 equation targeted at playing
individual games in the General Video Game AI (GVGAI) Framework. Each
equation is evolved to maximize playing strength in a single game, but is then
also tested on all other games in our test set. For every game included in the
experiments, we found a UCB replacement that performs significantly better than
standard UCB1. Additionally, evolved UCB replacements also tend to improve
performance in some GVGAI games for which they are not evolved, showing
that improvements generalize across games to clusters of games with similar
game mechanics or algorithmic performance. Such an evolved portfolio of UCB
variations could be useful for a hyper-heuristic game-playing agent, allowing it to
select the most appropriate heuristics for particular games or problems in general.
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1 Introduction

Monte Carlo Tree Search (MCTS) is a relatively new and very popular stochastic tree
search algorithm, which has been used with great success to solve a large number of
single-agent and adversarial planning problems [5]. Unlike most tree search algorithms,
MCTS builds unbalanced trees; it spends more time exploring those branches which
seem most promising. To do this, the algorithm must balance exploitation and exploration
when deciding which node to expand next.

In the canonical formulation of MCTS, the UCB1 equation is used to select which
node to expand [1]. It does this by trying to maximize expected reward while also making
sure that nodes are not underexplored, so that promising paths are not missed.

While MCTS is a general-purpose algorithm, in practice there are modifications
to the algorithm that make it perform better on various problems. In the decade since
MCTS was invented (in the context of Computer Go [22]), numerous modifications have



been proposed to allow it to play better in games as different as Chess [3] and Super
Mario Bros [10], and for tasks as different as real-value optimization and real-world
planning. While some of these modifications concern relatively peripheral aspects of the
algorithm, others change or replace the UCB1 equation at the heart of it.

The large number of different MCTS modifications that have been shown to improve
performance on different problems poses the question whether we can automate the
search for modifications suitable for particular problems. If we could do that, we could
drastically simplify the effort of adapting MCTS to work in a new domain. It also poses
the question whether we can find modifications that improve performance compared
to the existing UCB1 not just on a single problem, but on a larger class of problems.
If we can identify the class of problems on which a particular MCTS version works
better, we can then use algorithm selection [21, 12] or hyper-heuristics [6] to select the
best MCTS version for a particular problem. And regardless of practical improvements,
searching the space of node selection equations helps us understand the MCTS algorithm
by characterizing the space of viable modifications.

In this paper, we describe a number of experiments in generating replacements for
the UCB1 equation using genetic programming. We use the General Video Game AI
(GVGAI) framework as a testbed. We first evolve UCB replacements with the target
being performance on individual games, and then we investigate the performance of the
evolved equations on all games within the framework. We evolve equations under three
different conditions: (1) only given access to the same information as UCB1 (UCB+);
(2) given access to additional game-independent information (UCB++); and (3) given
access to game-specific information (UCB#).

2 Background

2.1 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a relatively recently proposed algorithm for planning
and game playing. It is a tree search algorithm which selects which nodes to explore in a
best-first manner, which means that unlike Minimax (for two-player games) and breadth-
first search (for single-player games) Monte Carlo Tree Search focuses on promising
parts of the search tree first, while still conducting targeted exploration of under-explored
parts. This balance between exploitation and exploration is usually handled through the
application of the Upper Confidence Bound for Trees (UCT) algorithm which applies
UCB1 to the search tree.

The basic formulation of UCB1 is given in equation 1, but many variations exist [1,
5, 15].

UCB1 = Xj +

√
lnn

nj
(1)

These variations change UCB1 by e.g. optimizing it for single-player games or incor-
porating feature selection to name a few variations. However, when we use MCTS for
general game playing it becomes impossible to know if we are better off using “plain
UCB” or some specialized version, since we do not know which game we will encounter.



Ideally, we need some way of searching through the different possible variations of
tree selection policies to find one that is well suited for the particular game in question.
We propose addressing this problem by evolving tree selection policies to find specific
formulations that are well suited for specific games. If successful, this would allow
us to automatically generate adapted versions of UCB for games we have never met,
potentially leading to better general game playing performance.

2.2 Combinations of evolution and MCTS

Evolutionary computation is the use of algorithms inspired by Darwinian evolution
for search, optimization, and/or design. Such algorithms have a very wide range of
applications due to their domain-generality; with an appropriate fitness function and
representation, evolutionary algorithms can be successfully applied to optimization tasks
in a variety of fields.

There are several different ways in which evolutionary computation could be com-
bined with MCTS for game playing. Perhaps the most obvious combination is to evolve
game state evaluators. In many cases, it is not possible for the rollouts of MCTS to
reach a terminal game state; in those cases, the search needs to “bottom out” in some
kind of state evaluation heuristic. This state evaluator needs to correctly estimate the
quality of a game state, which is a non-trivial task. Therefore the state evaluator can be
evolved; the fitness function is how well the MCTS agent plays the game using the state
evaluator [19].

Of particular interest for the current investigation is Cazenave’s work on evolving
UCB1 alternatives for Go [7]. It was found that it was possible to evolve heuristics
that significantly outperformed the standard UCB1 formulation; given the appropriate
primitives, it could also outperform more sophisticated UCB variants specifically aimed
at Go. While successful, Cazenave’s work only concerned a single game, and one which
is very different from a video game.

MCTS can be used for many of the same tasks as evolutionary algorithms, such as
content generation [4, 5] and continuous optimization [14]. Evolutionary algorithms have
also been used for real-time planning in single-player [16] and two-player games [11].

2.3 General Video Game Playing

The problem of General Video Game Playing (GVGP) [13] is to play unseen games.
Agents are evaluated on their performance on a number of games which the designer of
the agent did not know about before submitting the agent. GVGP focuses on real time
games compared to board games (turn based) in General Game Playing. In this paper, we
use the General Video Game AI framework (GVGAI), which is the software framework
associated with the GVGP competition [17, 18]. In the competition, competitors submit
agents which are scored on playing ten unseen games which resemble (and in some
cases are modeled on) classic arcade games from the seventies and eighties.

It has been shown that for most of these games, simple modifications to the basic
MCTS formulation can provide significant performance improvements. However, these
modifications are non-transitive; a modification that increases the performance of MCTS
on one game is just as likely to decrease its performance on another [9]. This points



to the need for finding the right modification for each individual game, manually or
automatically.

Fig. 1. Each screen represent a different GVGAI game. Games in order from top left to bottom
right: Zelda, Butterflies, Boulderdash, and Solarfox

We selected five different games from the framework as testbeds for our experiments:

– Boulderdash: is a VGDL (Video Game Description Language) port of Boulderdash.
The player’s goal is to collect at least ten diamonds then reach the goal while not
getting killed by enemies or boulders.

– Butterflies: is an arcade game developed specifically for the framework. The
player’s goal is to collect all the butterflies before they destroy all the flowers.

– Missile Command: is a VGDL port of Missile Command. The player’s goal is to
protect at least one city building from being destroyed by the incoming missiles.

– Solar Fox: is a VGDL port of Solar Fox. The player’s goal is to collect all the
diamonds and avoid hitting the side walls or the enemy bullets. The player has to
move continuously which makes the game harder.

– Zelda: is a VGDL port of The legend of Zelda dungeon system. The goal is to reach
the exit without getting killed by enemies. The player can kill enemies using his
sword.

Figure 1 shows some levels of these games. These games require very different strategies
from agents for successful play providing varied testbeds for the approach. They also
have in common that standard MCTS with the UCB1 equation does not play these games



perfectly (or even very well) and in the past it has been shown that other agents play
them better than MCTS.

2.4 Genetic Programming

Genetic Programming (GP) [20] is a branch of evolutionary algorithms [2, 8] which
evolves computer programs as a solution to the current problem. GP is essentially the
application of genetic algorithms (GA) [23] to computer programs. Like GAs, GP evolves
solutions based on Darwinian theory of evolution. A GP run starts with a population of
possible solutions called chromosomes. Each chromosome is evaluated for its fitness
(how well it solves the problem). In GP, chromosomes are most commonly represented
as syntax trees where inner nodes are functions (e.g. addition, subtraction, conditions)
while leaf nodes are terminals (e.g. constants, variables). Fitness is calculated by running
the current program and seeing how well it solves the problem. GP uses Crossover and
Mutation to evolve the new chromosomes. Crossover in GP combines two different
programs at a selected node by swapping the subtrees at these nodes, and mutation in
GP alters a node value.

3 Methods

In the GP algorithm, chromosomes are represented as syntax trees where nodes are either
unary or binary functions while leaves are either constant values or variables. The binary
functions available are addition, subtraction, multiplication, division and power; instead
the unary functions are square root, absolute value, multiplicative inverse and natural
logarithm. The constant values can be 0.1, 0.25, 0.5, 1, 2, 5, 10, 30 and their opposites.
The formula can be composed of variables belonging to three different sets:

– Tree Variables: represent the state of the tree built by MCTS, i.e. the variables that
are used by the UCB1 formula;

– Agent Variables: related to the agent behavior;
– Game Variables: describe the state of the game;

The fitness function is a linear combination of two parameters, win ratio and average
score, coming from the simulation of multiple playthroughs of one level of a single
game. Equation 2 shows how these two parameters are combined. We used the same
formula used in the GVGAI competition to rank agents, with win ratio having higher
priority than average score.

Fitness = 1000 ∗ win ratio + avg score (2)

In the process of evolving a game-specific equation each chromosome is tested
over 100 playthroughs. Rank-based selection creates the pool of chromosomes used to
generate the next generation. Two chromosomes are selected and subtree crossover is
applied to the couple, later a mutation operator is applied to each new chromosome.
The mutation can be either a constant mutation, point mutation, or a subtree mutation.
Constant mutation selects a constant, if present, from the tree and changes it with new



value between the ones available in the constants values set. Point mutation consists in
selecting a node with a 0.05 probability and swapping it with a node of the same type
(either unary node, binary node, variable or constant). Subtree mutation picks a subtree
and substitutes it with another tree of depth randomly distributed between 1 and 3.

In the population of the first generation contains 1 UCB1 chromosome and 99 ran-
dom ones. UCB1 is injected in the initial population in order to push the GP to possibly
converge faster to a better equation. We run the GP for 30 generations. Between one
generation and the next a 10% elitism is applied to guarantee that the best chromosomes
are carried out to the next generation.

The performance of the best equations, between all the chromosomes evolved by the
genetic algorithm, is validated through the simulation of 2000 playthroughs.

For Boulderdash, Butterflies, Missile Command, Solar Fox, and Zelda we evolved
new formulae under three different conditions:

– UCB+, using only Tree Variables;
– UCB++, using both Tree and Agent Variables;
– UCB#, using Tree, Agent and Game Variables;

Game Tree Policy Mean Median Min Max SD Win ratio
Boulderdash UCB1 5.30 4.00 0 186 5.22 0
Boulderdash UCB+ 5.05 4.00 0 18 2.85 0
Boulderdash UCB++ 28.48 3.0 -1.0 36.0 23.92 0.018
Boulderdash UCB# 27.03 3.0 -1.0 36.0 21.85 0.014
Butterflies UCB1 37.39 32.00 8 86 18.92 0.902
Butterflies UCB+ 36.34 30.00 8 88 18.68 0.89
Butterflies UCB++ 35.84 30.00 8 80 18.43 0.914
Butterflies UCB# 22.302 18.0 12.0 48.0 8.13 0.993
Missile Command UCB1 2.88 2.00 2 8 1.37 0.641
Missile Command UCB+ 3.03 2.00 2 8 1.44 0.653
Missile Command UCB++ 4.95 5.00 2 8 2.13 0.785
Missile Command UCB# 8.0 8.0 8.0 8.0 0.0 1.0
Solarfox UCB1 6.31 5.00 0 32 6.06 0.00565
Solarfox UCB+ 6.49 5.00 0 32 5.81 0.0075
Solarfox UCB++ 7.765 6.0 -7.0 32.0 9.152 0.067
Solarfox UCB# 18.57 18.0 -5.0 32.0 12.318 0.412
Zelda UCB1 3.58 4.00 0 8 1.85 0.088
Zelda UCB+ 6.32 6.00 0 8 1.26 0.155
Zelda UCB++ 6.906 8.0 -1.0 8.0 1.623 0.633
Zelda UCB# 6.661 7.0 -1.0 8.0 1.731 0.613

Table 1. Descriptive statistics for all the tested games. Mean, Median, Min, Max, and SD all relate
to the score attained using UCB1, UCB+, UCB++, and UCB#, respectively. A bold value is
significantly better than UCB1 (p < 0.05).



4 Results

Table 1 shows the results of all the evolved equations compared to UCB1. We can
see that UCB# is almost always better than all the others equations, followed by
UCB++, then UCB+, finally UCB1. This was expected as the later equations have
more information about the current game than the previous. Interestingly, almost all
evolved equations can be said to implement the core idea behind UCB1 equation 1, in
that they consist of two parts: exploitation and exploration.

4.1 Evolved Equations

In this section we will discuss and try to interpret every equation evolved for each game.
We describe the best formula found in each experimental condition (UCB+, UCB++,
and UCB#) for each game. All variables and their meanings can be found in Table 2.

Boulderdash
UCB+ = max(Xj)(max(Xj)

9dj + 1)− 0.25 (3)

Equation 3 pushes MCTS to exploit more without having any exploration. The reason
is that the Boulderdash map is huge compared to other games, with a small number of
diamonds scattered throughout the map. GP finds that exploiting the best path is far
better than wasting time steps in exploring the rest of the tree.

UCB++ = max(Xj) + dj +
1

Exy
+ 1.25 (4)

Equation 4 consists of two exploitation terms and one exploration term. The exploita-
tion term tries to focus on the deepest explored node with the highest value, while the
exploration pushes MCTS to explored nodes that are least visited in the game space.

UCB# = max(Xj) +
Nport

min(Dport) ·
√

Exy

(5)

Equation 5 consists of two main parts. The first part makes the agent more courageous
and it seeks actions that increase his maximum reward regardless of anything else. The
second part pushes the agent toward exploring the map while staying close to the exit
door. This equation reflects the goal of the game, we can say the first part makes the
player collect gems, while the second part pushes the agent towards the exit.

Butterflies

UCB+ = Xj +
1

n2
j ·
√
dj(dj ·

√
0.2 · dj ·max(Xj) + 1)

(6)

Equation 6 is similar to MCTS with exploitation and exploration terms. The exploitation
term is similar to UCB1 while the exploration term is more complex. The exploration
term tries to explore the shallowest least visited nodes in the tree with the least maximum



value. The huge map of the game with butterflies spread all over it leads MCTS to
explore the worst shallowest least visited node. The value of the exploration term is very
small compared to the exploitation one so it will make a difference only between similar
valued nodes.

(7)UCB++ =
√
max(Xj)+2Xj−

Xj

Rj
−(

lnXj√
max(Exy) + X−0.25

j

+
√

Uj)
max(Exy)

Equation 7 is similar to MCTS with the mixmax modification [9]. The first two terms
resemble mixmax with different balancing between average child value and maximum
child value. The other two terms force the MCTS to search for nodes with the least
useless moves and with the highest number of reverse moves. The useless moves force
the agent to go deeper in branches that have more moves, while the number of reverse
moves in butterflies forces the agent to move similarly to the butterflies in the game
which leads to capture more of them.

UCB# = Xj +
1

ΣDnpc
(8)

Equation 8 consists of two main parts. The first part is similar to the exploitation term
in MCTS. The second part makes the agent get closer to the butterflies. This equation
reflects the goal of the game, we can say the first term makes the agent collect the
butterflies, while the second term makes the agent get closer to them.

MissileCommand

UCB+ = Xj + (10 +
X

Xj

j

n
)−1/lnn (9)

Equation 9 has the same exploitation term as UCB1. Although the second term is very
complex, it forces MCTS to pick nodes with less value. This second term is very small
compared to the first term so it’s relevant only when two nodes have nearly identical
values.

(10)
UCB++ = Xj +

max(Xj)

n · Exy · (2Xj)0.2nj
·

(dj −
1

2/max(Xj) + 2Uj/Xj + 2 lnXj + 1/n
)−1

Equation 10 has the same exploitation term from UCB1. Even though the second term
is very complex, it forces MCTS to explore the least spatially visited node with the least
depth. This solution is most likely evolved due to the simplicity of Missile Command
which allows GP to generate an overfitted equation that suits this particular game.

UCB# = Xj +
1

min(Dnpc)
(11)

Equation 11 is similar to Butterflies equation 8 with a very small difference. The
difference is that the second term instead of summing all the distances, it just goes



toward the nearest missile. One of the reasons is that the goals of both games are
similar: the agent wants to get closer to the moving entity (either its a butterfly or a
missile). In Butterflies, the agent wins only if it collects (destroys) all butterflies while in
MissileCommand, the agent wins if it destroys at least one missile. This is the reason for
having a more loose equation for MissileCommand than Butterflies.

Solarfox

UCB+ = Xj +

√
dj
nj

(12)

Equation 12 is a variant of the original UCB1 equation. The exploitation term is the
same while the exploration term is simplified to select the deepest least selected node
regardless of anything else.

UCB++ = Xj + 2 · Exy

Xj
(13)

Equation 13 consists of two parts. The first part is similar to the exploitation term in the
UCB1 equation 1. The second part pushes the agent towards the most visited position
with the least total reward.

UCB# = 2 ·Xj +
1

min(Dmov)
(14)

Equation 14 is similar to the MissileCommand equation 11 but with a different target. It
focuses more on the exploitation term (increase the average score) than on getting closer
to movable objects. The reason for this is that in Solarfox, the movable objects can be
gems, enemies, and missiles. The agent is not able to differentiate between these three
movable objects.

Zelda
UCB+ = (n + max(Xj))

(n+max(Xj)) (15)

Equation 15 is pure exploitation. This equation selects the node with maximum value.
This new equation leads the player to be more courageous which then leads to a higher
win rate and a higher score than UCB1.

(16)UCB++ = 0.1 ·max(Xj) · (
1
√
nj
−Rj −

√
0.5 · Uj +

n0.25
j · (2 · dj + 1)

30 + Exy −max(Exy)
)

Equation 16 is a very complex equation but it consists of two parts. The first one is
exploitation using max value which forces the agent to be more courageous. The second
part consists of multiple parts which are all related to exploration. These parts push
the agent to explore the least visited node with the least repetition of the same action,
the least useless actions, and the least visited position on the map. The main reason of
having a very complex equation is Zelda being a hard game with multiple objectives:
navigating the level, avoiding or killing enemies, getting the key then reach goal.



Fig. 2. Each graph shows the win ratio in all the games of the equations evolved and UCB1. Each
column in a graph is a game and each dot in the column represents a win ratio. The dotted lines
show the average win ratio across all the games.

(17)UCB# =
√
max(Xj − 0.25) + (ΣDres)

0.5·max(Dmov)

+ (max(Xj) · ΣDimmov)−0.5·Exy + 0.1 · n

Equation 17 consists of three main parts as 0.1 · n is equal for all children of the same
node. The first part is the exploitation term, while the others are very complex terms for
exploration and evading the enemies. The reason of having a very complex equation is
the same for equation 16.

4.2 Testing evolved equations on all other games

We ran all evolved equations on all 62 public games in GVGAI framework to see if any
of these equations can be generalized. All the results are shown in Figure 2. The average
win ratio of the evolved equations is generally rather similar to UCB1 on average. In
particular the two UCB# equations evolved for Butterflies and Missile Command are
better than UCB1 over all games, in the latter case with a gain of 0.02 (2%) for the win
ratio. The only UCB# that performs poorly compared to the others is the one evolved
for Zelda. The probable reason is that the evolved formula for Zelda, a complex game,
overfit to this game (as evidenced by the complexity and length of the formula).

For over 20 games, excluded the ones used in the evolutionary process, one of the
evolved equation could score an improvement in the win ratio of 0.05 (5%). In particular



Variables
dj Tree child depth
n Tree parent visits
nj Tree child visits
Xj Tree child value
Uj Agent useless moves for this child
Exy Agent number of visits of the current tile
Rj Agent repeated actions as the current
RVj Agent opposite action count to the current
Dmov Game distance from movable object
Dimmov Game distance from immovable object
Dnpc Game distance from NPC
Dport Game distance from portal
Nport Game number of portals

Table 2. Variables used in the formula and their meanings, as well as what type of variable it is
(tree variable, agent variable or game variable).

in some cases the gain is more than 0.6 (60%), resulting in the algorithm mastering
the game. For example, UCB# evolved for Boulderdash in the games Frogs, Camel
Race and Zelda is remarkable, as it takes MCTS to win rates of 96%, 100% and 70%
respectively. This happens because the evolved formula embeds important information
about the game: the benefit of decreasing the distance from portals.

Another great example is UCB# evolved for Butterflies, which encapsulates the
importance of staying close to NPCs (either to collect resources or to kill enemies) in
the games of DigDug (80%), Missile Command (100%), Survive Zombies (72%) and
Wait For Breakfast (50%).

5 Discussion and Conclusion

In this paper we have presented a system to evolve heuristics, used in the node selection
phase of MCTS, for specific games. The evolutionary process implements a Genetic
Programming technique that promotes chromosomes with the highest win rate. The goal
is to examine the possibility of systematically finding UCB alternatives.

Our data supports the hypothesis that it is possible to find significantly enhance
heuristics. Moreover, we can argue that embedding knowledge about the game (UCB#)
and about the agent’s behavior (both UCB++ and UCB#) allows to get exceptional
improvements. With either UCB++ or UCB# we were able to beat UCB1 in all the
five games used in our experiments; UCB+ was able to beat UCB1 for three games,
while using the same information. This supports the idea of developing a portfolio
of equations that can conveniently be selected by an hyper-heuristic agent or through
algorithm selection to achieve higher performance.

Many of the UCB alternatives evolved still resemble the exploitation/exploration
structure of the original UCB. While the exploitation term is still the same, although
sporadically swapped or enhanced by the mixmax modification, the equations instead



push the concept of exploration toward different meanings, such as spatial exploration
and game-element hunt, embodying in the equation some general knowledge of the
domain of games. One might even use the evolved formula to better understand the
games.

Subsequently we tested the evolved equations across all games currently available
in the GVG-AI framework. We could notice an overall slight improvement for UCB#

evolved for Missile Command and Butterflies. We also noted how a single clean equation
can behave very well on games that share some design aspect. This encourages us to
evolve heuristics not just for a single game but for clusters of games.

References

1. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem.
Machine learning 47(2-3), 235–256 (2002)
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