
Evolving UCT Alternatives for General Video Game Playing

Ivan Bravi, Ahmed Khalifa, Christoffer Holmgård, Julian Togelius
New York University, Tandon School of Engineering

ivan.bravi@nyu.edu, ahmed.khalifa@nyu.edu, holmgard@nyu.edu, julian@togelius.com

Abstract

We use genetic programming to evolve alternatives
to the UCB1 heuristic used in the standard UCB for-
mulation of Monte Carlo Tree Search. The fitness
function is the performance of MCTS based on the
evolved equation on playing particular games from
the General Video Game AI framework. Thus, the
evolutionary process aims to create MCTS variants
that perform well on particular games; such variants
could later be chosen among by a hyper-heuristic
game-playing agent. The evolved solutions could
also be analyzed to understand the games better. Our
results show that the heuristic used for node selec-
tion matters greatly to performance, and the vast
majority of heuristics perform very badly; further-
more, we can evolve heuristics that perform better
thanm UCB1 in several games. The evolved heuris-
tics differ greatly between games.

1 Introduction
Monte Carlo Tree Search (MCTS) is a popular and effective
algorithm for planning and game playing, which has in par-
ticular seen successes in general game playing, i.e. playing
unseen games where no a priori domain information is pos-
sible [Kocsis and Szepesvári, 2006; Browne et al., 2012]. In
its most common formulation, the algorithm builds a search
tree through exploring nodes in a best-first manner, and ev-
ery time a new node is explored a random playout of the
game/planning problem is performed to stochastically esti-
mate the value of the node; values are also propagated up to
all ancestors of a node. At the core of the MCTS algorithm
is the UCB1 equation which allows the algorithm to balance
between exploration and exploitation.

A large number of modifications to the basic MCTS algo-
rithm have been advanced to deal with particular games and
other problem domains. The modifications that make MCTS
work better for a particular problem might very well make
it worse for another problem, meaning that domain knowl-
edge is necessary to invent and select the right modification
for a given problem. The literature contains a large number
of MCTS modifications, a handful of which are listed in a
well-known survey paper [Browne et al., 2012]. While some

of these modifications change the way the overall MCTS al-
gorithm works or focuses on particular aspects such as the
roll-out, others change the UCB1 equation itself [Jacobsen et
al., 2014].

As exploring new variants of the MCTS algorithm is a cur-
rently fruitful area, one wonders whether it would be possible
to automate some version of this research. In other words: au-
tomate the invention of such modifications. Furthermore, one
wonders if it would be possible to automatically create MCTS
variations that are specifically tailored to particular games or
problems. This could be useful for example in agents based
on hyper-heuristics, that would select appropriate MCTS vari-
ations for particular games/problems [Burke et al., 2013]. But
it could also be useful for understanding the characteristics of
a particular game/problem through finding which MCTS vari-
ation performs best at it; in other words analyzing the problem
through finding strategies for solving it.

In this paper we propose using genetic programming to
evolve replacement equations for the UCB1 equation. The
idea is that different versions of, or alternatives to, UCB1
might make MCTS more suitable for particular problems, and
that we can find such alternatives or versions automatically.
For our testbed problems, we use the games in the General
Video Game Playing framework. We show that for several
games, we can find replacements for UCB1 that makes MCTS
play the game as well.

2 Background
This section reviews the background on Monte Carlo Tree
Search, how it has been combined with evolution, genetic
programming and general video game playing.

2.1 Monte Carlo Tree Search
Monte Carlo Tree Search (MCTS) is a relatively recently
proposed algorithm for planning and game playing. It is a
tree search algorithm which selects which nodes to explore
in a best-first manner, which means that unlike Minimax (for
two-player games) and breadth-first search (for single-player
games) Monte Carlo Tree Search focuses on promising parts of
the search tree first, while still conducting targeted exploration
of under-explored parts. This balance between exploitation
and exploration is usually handled through the application
of the Upper Confidence Bound for Trees (UCT) algorithm
which applies UCB1 to the search tree.



The basic formulation of UCB1 is given in Equation 1, but
many variations exist for different games [Auer et al., 2002;
Browne et al., 2012; Park and Kim, 2015].

UCB1 = Xj + 2Cp

√
2 lnn

nj
(1)

These variations change UCB1 by e.g. optimizing it for single-
player games or incorporating feature selection to name a few
variations. However, when we use MCTS for general game
playing it becomes impossible to know if we are better off
using “plain UCB” or some specialized version, since we do
not know which game we will be encountering.

Ideally, we need some way of searching through the differ-
ent possible variations of tree selection policies to find one
that is well suited for the particular game in question. We
propose addressing this problem by evolving tree selection
policies to find specific formulations that are well suited for
specific games. If successful, this would allow us to automat-
ically generate adapted versions of UCB for games we have
never met, potentially leading to better general game playing
performance.

2.2 Combinations of evolution and MCTS
Evolutionary computation is the use of algorithms inspired
by Darwinian evolution for search, optimization, and/or de-
sign. Such algorithms have a very wide range of applications
due to their domain-generality; with an appropriate fitness
function and representation, evolutionary algorithms can be
successfully applied to optimization tasks in a variety of fields.

There are several different ways in which evolutionary com-
putation could be combined with MCTS for game playing.
Perhaps the most obvious combination is to evolve game state
evaluators. In many cases, it is not possible for the rollouts
of MCTS to reach a terminal game state; in those cases, the
search needs to “bottom out” in some kind of state evaluation
heuristic. This state evaluator needs to correctly estimate the
quality of a game state, which is a non-trivial task. Therefore
the state evaluator can be evolved; the fitness function is how
well the MCTS agent plays the game using the state evaluator.
This is done routinely for Minimax search and has been done
several times in the literature for MCTS [Pettit and Helmbold,
2012].

Of particular interest for the current investigation is
Cazenave’s work on evolving UCB1 alternatives for
Go [Cazenave, 2007]. It was found that it was possible
to evolve heuristics that significantly outperformed standard
UCB formulations; given the appropriate primitives, it could
also outperform more sophisticated UCB variants specifically
aimed at Go. While successful, Cazenave’s work only con-
cerned a single game, and one which is very different from a
video game.

At first sight, it would seem that evolutionary algorithms
and MCTS are very different kinds of algorithms used for
very different purposes. However, it has recently emerged
that they can be used for very similar purposes. MCTS has
been used for content generation [Browne, 2011; Browne et
al., 2012] and continuous optimization [McGuinness, 2016].
Evolutionary algorithms have also been used for real-time

planning in single-player [Perez et al., 2013] and two-player
games [Justesen et al., 2016].

This points to the ability of both MCTS and evolutionary
search to focus limited computational resources on the most
promising parts of a large search space, given simple metrics
of outcomes and, in the case of MCTS, indications of how to
balance exploration and exploitation of promising areas found
during the search. More fundamentally, it raises the question
whether these two algorithms are similar on some deeper level–
perhaps there could even be a framework defining a space with
MCTS at one end and a genetic algorithm or evolution strategy
on the other.

2.3 General Video Game Playing
The field of General Video Game Playing (GVGP) is an ex-
tension of General Game Playing (GGP) [Levine et al., 2013]
which focuses on asking computational agents to play unseen
games. Agents are evaluated on their performance on a num-
ber of games which the designer of the agent did not know
about before submitting the agent. GVGP focuses on real
time games compared to board games (turn based) in General
Game Playing.

In this paper, we use the General Video Game AI framework
(GVGAI), which is the software framework associated with
the GVGAI competition [Perez et al., 2015; Perez-Liebana et
al., 2016]. In the learning track of the GVGAI competition,
competitors submit agents which are scored on playing ten
unseen games which resemble (and in some cases are modeled
on) classic arcade games from the seventies and eighties.

It has been shown in the past that for most of these games,
simple modifications to the basic MCTS formulation can pro-
vide significant performance improvements. However, these
modifications are non-transitive; a modification that increases
the performance of MCTS on one game is just as likely to
decrease its performance on another [Frydenberg et al., 2015].
This points to the need for finding the right modification for
each individual game, either manually or automatically.

We selected five different games from the framework as
testbeds for the tree selection policy evolution:

• Boulderdash: is a VGDL port of Boulderdash. The
player’s goal is to collect at least ten diamonds then reach
the goal while avoiding getting killed either by enemies
or boulders.

• Zelda: is a VGDL port of The legend of Zelda dungeon
system. The player’s goal is to reach the exit without
getting killed by enemies. The player can kill enemies
using its sword.

• Missile Command: is a VGDL port of Missile Com-
mand. The player’s goal is to protect at least one city
building from being destroyed by the incoming missiles.
The player can move around and destroy missiles by
attacking them.

• Solar Fox: is a VGDL port of Solar Fox. The player’s
goal is to collect all the diamonds and avoid hitting the
side walls or the enemy bullets. The player is always
moving like a missile which makes it harder to control.



Figure 1: Distribution of fitness of random UCT+ equations over five games

• Butterflies: is an arcade game developed for the frame-
work. The player’s goal is to collect all the butterflies
before they destroy all the flowers.

These games require very different strategies from agents for
successful play and together provide varied testbeds for the
approach. They also have in common that standard MCTS
with the UCB1 equation does not play the game perfectly (or
even very well) and that other agents have been shown to play
the game better in the past.

2.4 Genetic Programming
Genetic Programming (GP)[Poli et al., 2008] is a branch
of evolutionary algorithms[Bäck and Schwefel, 1993] which
evolves computer programs as a solution to the current prob-
lem. GP is essentially the application of genetic algorithms
(GA)[Whitley, 1994] to computer programs. Like GAs, GP
evolves solutions based on Darwinian theory of evolution. A
GP run starts with a population of possible solutions called
chromosomes. Each chromosome is evaluated for its fitness
(how well it solves the problem). New chromosomes are gen-
erated using genetic operators, such as crossover and mutation,
from the current chromosomes, creating a new population.
This process is repeated until a given termination condition is
met.

In GP, chromosomes are most commonly represented as
syntax trees where inner nodes are functions (e.g. addition,
subtraction, if-condition, ...etc) while leaf nodes are termi-
nals (e.g. constants, variables, ...etc). Fitness is calculated
by running the current program and see how well it solves
the problem. GP uses Crossover and Mutation to evolve the
new chromosomes. Crossover in GP combines two different
programs at a selected node by swapping the subtrees at these

nodes. Mutation in GP alters the selected node value to a new
suitable value.

3 Methods

The chromosome representation in our GP algorithm is a syn-
tax tree where the nodes represent either unary or binary
functions while the leaves are either constants values or vari-
ables. The binary functions are addition, subtraction, multi-
plication, division and power. The unary functions are square
root, absolute value, multiplicative inverse and natural loga-
rithm. The constant values come from a set of possible values
ranging from -30 to 30. Namely: 0.1, 0.25, 0.5, 1, 2, 5, 10,
30, -0.1, -0.25, -0.5, -1, -2, -5, -10, -30. The formula can
contain variables belonging to two sets: TreeV ariable set
and AgentV ariable set. The variables regarding the state of
tree built by MCTS belong to the Tree Variables set, namely:
child depth, child value, child visits, parent visits and child
max value. Instead the Agent Variables set contains the vari-
ables related to the agent’s behavior like: history reverse value,
it represents the number of opposite actions taken w.r.t. the
current; history repeating value, times the current action has
been repeated; useless value, number of actions that don’t
produce any effect; exploration value, number of times the cur-
rent position has been visited before; exploration max value,
it represents the number of times the most visited position has
been visited.

The fitness function is based on two parameters derived
from the simulation of 100 playthroughs of one level of the
game: win ratio and average score. Equation 2 shows how
these two parameters are combined. We followed the same
competition rules as win ratio have higher priority than aver-



age score.

Fitness = 1000 ∗ win ratio+ avg score (2)

We use a rank based selection to choose the chromosomes
to generate the new chromosomes. The offsprings are created
as follows. Two chromosomes are selected from the current
generation, then a subtree crossover is performed and finally a
mutation operator is applied between: point mutation, subtree
mutation and constant mutation. Point mutation selects a node
with 5% probability and swap it with a node of the same type,
the types are unary node, binary node, variable and constants.
The subtree mutation, instead, selects a subtree and substitutes
it with a random tree of randomly distributed depth between 1
and 3. Finally, the constants mutation selects a constant node
from the tree and selects a new value from the set of available
constant values. Both trees derived from the two trees selected
are put in the new generation.

The population of the first generation is composed of 1
UCB1 chromosome and 99 random chromosomes. We added
the UCB1 equation in the initial population to push the GP
to converge faster and find something better. We run the GP
for 30 generation. In each generation, we use a 10% elitism to
guarantee that the best chromosome is carried out to the next
generation.

The number of repetitions per fitness evaluation is high
enough to give a decent evaluation within a reasonable amount
of time.

Once gathered the results from the genetic algorithm we
pick the best tree evolved and we verify its validity by running
a simulation over 2000 playthroughs.

For Solar Fox and Zelda we evolved a UCT+ formula using
only the Tree Variable set. While for Boulderdash, Butterflies
and Missile Command we evolved two new formulae: UCT+,
using only the Tree Variable set; and UCT++, using both the
Tree Variable and Agent Variable sets.

4 Results
In this section, we explore the implications of replacing the
UCB1 equation with alternative equations in five games from
the publicly available training set in the GVGAI framework.

For each game, we first attempted replacing the UCB1 equa-
tion with random replacement equations. This was done to
investigate the impact the UCB1 equation itself has, and the
range of performance exhibited by the basic MCTS algorithm
when its core equation is changed. Our experiments showed
that the replacement resulted in agents with very low perfor-
mance, as shown in Table 1. Figure 1 shows the distribution
of the fitness of these random equations over all five games.

In the following we describe the results of evolving new
UCB1 replacements following the process outlined above. For
each game we describe the best equation found, compare its
performance to that of UCB1, and discuss what this says about
the role of UCB1 and about the AI problem posed by the
specific game.

Table 2 compares the UCB1 equation with the generated
alternatives (UCB+ and UCB++) and only exploitation term
(Xj) for each different game. The data is collected from
2000 runs using UCB1, Xj , UCB+, and UCB++ for all

Missile Command
Metric min max 25%ile 50%ile 75%ile

Win ratio 0 0.5 0.02 0.07 0.13
Score −3 0.49 −2.31 −1.9 −1.46

Butterflies
Metric min max 25%ile 50%ile 75%ile

Win ratio 0 0.84 0.02 0.04 0.08
Score 2.18 40.5 25.46 27.58 30.56

Solar Fox
Metric min max 25%ile 50%ile 75%ile

Win ratio 0 0.2 0 0 0
Score −9.36 3.64 −7.15 −5.19 −4.52

Boulderdash
Metric min max 25%ile 50%ile 75%ile

Win ratio 0 0 0 0 0
Score −0.97 4.83 0.77 1.34 2.22

Zelda
Metric min max 25%ile 50%ile 75%ile

Win ratio 0 0.1 0 0 0
Score −1 5.84 −0.31 0.14 1.77

Table 1: Results from using random chromosome to define
tree policies across the testbed games used in this paper. As
is evident, these randomly controlled agents achieve very low
performances.

the five games. The performance of Xj is slightly worse or
equal in all games except win ration in Solarfox. The perfor-
mance of UCB+ is nearly similar to the UCB1 over score
and wins. UCB+ achieves higher win rate over Butterflies
and Zelda while worse in Missile Command and Solarfox.
UCB+ achieves higher mean score over Butterflies and So-
larfox while worse in the three remaining games. The perfor-
mance of UCB++ is always better than UCB1 in both wins
and score except for score in Butterflies. In this table, we com-
pare the mean scores and win ratio for UCB1, Xj , UCB+,
and UCB++ for each game. The scores are compared using
the Mann-Whitney U test for scores and the Chi Squared test
applied to the absolute number of wins out of 2000. For ease of
reading, double asterisk means p− value < 0.01 while single
asterisk means p− value < 0.05. Figure 2 shows the increase
of average fitness over generations during evolving UCB+

for all five games. Figure 3, instead, shows the increase of
average fitness over generations during evolving UCB++ for
Boulderdash, Butterflies and Missile Command.

4.1 Boulderdash
UCB+ = maxV alue(maxV alue9dj + 1)− 0.25 (3)

The evolved Equation 3 pushes MCTS to exploit more without
having any exploration. The reason is Boulderdash map is huge
compared to other games with a small amount of diamonds scattered
throughout the map. GP finds exploiting the best path is far more
better than wasting time steps in exploring the rest of the tree.

UCB++ = maxV alue+ dj +
1

Ej
+ 1.25 (4)

The evolved Equation 4 consists of two exploitation terms and one
exploration term. The exploitation term tries to focus on the deepest



Figure 2: Average fitness over generations over all five games

Figure 3: Average fitness over generations for Boulderdash, Butterflies and Missile Command

explored node with the highest value, while the exploration pushes
MCTS to explored nodes that are least visited in the game space.

4.2 Butterflies

UCB+ = Xj +
1

n2
j ·
√

dj(dj ·
√

0.2 · dj ·maxV alue+ 1)
(5)

The evolved Equation 5 is similar to MCTS with exploitation and
exploration terms. The exploitation term is similar to MCTS while
exploration term is more complex. The exploration term tries to
explore the shallowest least visited nodes in the tree with the least
maximum value. The huge map of the game with butterflies spread
all over it leads MCTS to explore the worst shallowest least visited
node. The value of the exploration is very small compared to the
exploitation term so it will only differentiate between similar valued
nodes.

(6)

UCB++ =
√
maxV alue+ 2Xj −

Xj

Rj

− (
lnXj√

maxExp+X−0.25
j

+
√

Uj)
maxExp

The evolved Equation 6 is similar to MCTS with mixmax modifi-
cation [Frydenberg et al., 2015]. The first two terms resemble the
mixmax with different balancing between average child value and
maximum child value. The other two terms force the MCTS to search
for nodes with the least useless moves and with the most number of
reverse moves. The useless forces the agent to go deeper in branches
that have more moves, while the number of reverse moves in butterfly
force the agent to move similar to the butterflies in the game which
leads to capture more of them.

4.3 Missile Command

UCB+ = Xj + (10 +
X

Xj

j

n
)−1/lnn (7)



Game Tree Policy Mean Median Min Max SD Win ratio
Boulderdash UCB1 5.30 4.00 0 186 5.22 0
Boulderdash Xj 4.83∗∗ 3.00 0 18 3.00 0
Boulderdash UCB+ 5.05∗∗ 4.00 0 18 2.85 0
Boulderdash UCB++ 19.51 3.00 0 1580 117.72 0.0182∗∗

Butterflies UCB1 37.39 32.00 8 86 18.92 0.902
Butterflies Xj 37.04 32.00 8 88 18.78 0.852∗∗

Butterflies UCB+ 36.34 30.00 8 88 18.68 0.89
Butterflies UCB++ 35.84∗∗ 30.00 8 80 18.43 0.914
Missile Command UCB1 2.88 2.00 2 8 1.37 0.641
Missile Command Xj 2.57∗∗ 2.00 2 5 1.18 0.409∗∗

Missile Command UCB+ 3.03∗ 2.00 2 8 1.44 0.653
Missile Command UCB++ 4.95∗∗ 5.00 2 8 2.13 0.785∗∗

Solarfox UCB1 6.31 5.00 0 32 6.06 0.00565
Solarfox Xj 6.30 5.00 0 32 5.84 0.00633
Solarfox UCB+ 6.49 5.00 0 32 5.81 0.0075
Zelda UCB1 3.58 4.00 0 8 1.85 0.088
Zelda Xj 3.58 4.00 0 8 1.85 0.064∗∗

Zelda UCB+ 6.32∗∗ 6.00 0 8 1.26 0.155∗∗

Table 2: Descriptive statistics for all the tested games. Mean, Median, Min, Max, and SD all relate to the score attained using
UCB1, Xj , UCB+, and UCB++, respectively. Wins simply indicates the number of wins out of 2000 possible obtained with
either policy.

The evolved Equation 7 has the same exploitation term as UCB1.
Although the second term is very complex, it forces MCTS to pick
nodes with less value. This second term is very small compared to
the first term so its only affecting when two nodes have nearly similar
values.

UCB++ = Xj +
maxV alue

n · Ej · (2Xj)0.2nj
·

(dj −
1

2/maxV alue+ 2Uj/Xj + 2 lnXj + 1/n
)−1

(8)

The evolved Equation 8 have the same exploitation term from
UCB1. Although the second term is very complex, it forces MCTS
to explore the least spatially visited node with the least depth. This
solution is most likely evolved due to the simplicity of Missile Com-
mand which allows GP to generate an overfitted equation that suits
this particular game.

4.4 Solarfox

UCB+ = Xj +

√
dj

nj
(9)

The evolved Equation 9 is a variant of the original UCB1 equation.
The exploitation term is the same while the exploration term is sim-
plified to select the deepest least selected node regardless of anything
else.

4.5 Zelda
UCB+ = (n+maxV alue)(n+maxV alue) (10)

The evolved Equation 10 is pure exploitation. This equation selects
the node with maximum value. This new equation leads the player to
be more courageous which leads to higher win rate and higher score
than standard UCB1.

5 Discussion and Conclusion
We have described an experiment in evolving node selection heuris-
tics to replace UCB1 in individual GVGAI games. The goal has not
been to find a better alternative to UCB1 in general, rather to find
alternatives that can exploit the properties of individual games. Such
alternatives could then be used in a hyper-heuristic approach to create
a general agent, and also studied to understand the characteristics of
the individual problem.

Our results show that changing the node selection heuristic has
very large effects on the performance of MCTS-based agents, with
most heuristics performing very poorly. Evolved heuristics perform
on par with UCB1 for all game save one. Analyzing the evolved
heuristics shows a large variety, though in almost all cases both an
exploration and an exploitation term can be discerned. Many of the
evolved UCB equations kept the exploitation term in some way or
another while the second term varied from being total exploration to
endorse more exploitation. This makes sense, for if an agent would
know the real score for each node, the best playing algorithm is a
greedy algorithm which exploits the best path. For some games,
the state evaluation heuristic is simply more accurate, suggesting
that exploration can be downplayed. These variations reflect basic
properties of the games, as expected; e.g. games with little need for
exploration downplay this element. Still, it is surprising to see that
some of the games perform about as well with just exploitation.

Using more variables in evolving the equation grants us better
evolved equations using just the same variables used in UCB1. The
new variables, using information that is specific to the GVGAI frame-
work but have analogues in many other games, allows evolution
to find UCB replacement that perform much better than the origi-
nal UCB1; the improvement is drastic for Boulderdash and Missile
Command.

References
[Auer et al., 2002] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fis-

cher. Finite-time analysis of the multiarmed bandit problem. Ma-



chine learning, 47(2-3):235–256, 2002.
[Bäck and Schwefel, 1993] Thomas Bäck and Hans-Paul Schwefel.

An overview of evolutionary algorithms for parameter optimiza-
tion. Evolutionary computation, 1(1):1–23, 1993.

[Browne et al., 2012] Cameron B Browne, Edward Powley, Daniel
Whitehouse, Simon M Lucas, Peter I Cowling, Philipp Rohlf-
shagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis,
and Simon Colton. A survey of monte carlo tree search methods.
Computational Intelligence and AI in Games, IEEE Transactions
on, 4(1):1–43, 2012.

[Browne, 2011] Cameron Browne. Towards mcts for creative do-
mains,”. In Proc. Int. Conf. Comput. Creat., Mexico City, Mexico,
pages 96–101, 2011.

[Burke et al., 2013] Edmund K Burke, Michel Gendreau, Matthew
Hyde, Graham Kendall, Gabriela Ochoa, Ender Özcan, and Rong
Qu. Hyper-heuristics: A survey of the state of the art. Journal of
the Operational Research Society, 64(12):1695–1724, 2013.

[Cazenave, 2007] Tristan Cazenave. Evolving monte carlo tree
search algorithms. Dept. Inf., Univ. Paris, 8, 2007.

[Frydenberg et al., 2015] Frederik Frydenberg, Kasper R Andersen,
Sebastian Risi, and Julian Togelius. Investigating mcts modi-
fications in general video game playing. In Computational In-
telligence and Games (CIG), 2015 IEEE Conference on, pages
107–113. IEEE, 2015.

[Jacobsen et al., 2014] Emil Juul Jacobsen, Rasmus Greve, and Ju-
lian Togelius. Monte mario: platforming with mcts. In Pro-
ceedings of the 2014 conference on Genetic and evolutionary
computation, pages 293–300. ACM, 2014.

[Justesen et al., 2016] Niels Justesen, Tobias Mahlmann, and Julian
Togelius. Online evolution for multi-action adversarial games.
In Applications of Evolutionary Computation, pages 590–603.
Springer, 2016.

[Kocsis and Szepesvári, 2006] Levente Kocsis and Csaba
Szepesvári. Bandit based monte-carlo planning. In Ma-
chine Learning: ECML 2006, pages 282–293. Springer,
2006.

[Levine et al., 2013] John Levine, Clare Bates Congdon, Marc
Ebner, Graham Kendall, Simon M Lucas, Risto Miikkulainen,
Tom Schaul, and Tommy Thompson. General video game playing.
Dagstuhl Follow-Ups, 6, 2013.

[McGuinness, 2016] Cameron McGuinness. Monte Carlo Tree
Search: Analysis and Applications. PhD thesis, 2016.

[Park and Kim, 2015] Hyunsoo Park and Kyung-Joong Kim. Mcts
with influence map for general video game playing. In Computa-
tional Intelligence and Games (CIG), 2015 IEEE Conference on,
pages 534–535. IEEE, 2015.

[Perez et al., 2013] Diego Perez, Spyridon Samothrakis, Simon Lu-
cas, and Philipp Rohlfshagen. Rolling horizon evolution versus
tree search for navigation in single-player real-time games. In
Proceedings of the 15th annual conference on Genetic and evolu-
tionary computation, pages 351–358. ACM, 2013.

[Perez et al., 2015] Diego Perez, Spyridon Samothrakis, Julian To-
gelius, Tom Schaul, Simon Lucas, Adrien Couëtoux, Jeyull Lee,
Chong-U Lim, and Tommy Thompson. The 2014 General Video
Game Playing Competition. 2015.

[Perez-Liebana et al., 2016] Diego Perez-Liebana, Spyridon
Samothrakis, Julian Togelius, Tom Schaul, and Simon M
Lucas. General Video Game AI: Competition, Challenges and
Opportunities. 2016.

[Pettit and Helmbold, 2012] James Pettit and David Helmbold. Evo-
lutionary Learning of Policies for MCTS Simulations. In Proceed-
ings of the International Conference on the Foundations of Digital
Games, pages 212–219. ACM, 2012.

[Poli et al., 2008] Riccardo Poli, William B Langdon, Nicholas F
McPhee, and John R Koza. A field guide to genetic programming.
Lulu. com, 2008.

[Whitley, 1994] Darrell Whitley. A genetic algorithm tutorial. Statis-
tics and computing, 4(2):65–85, 1994.


