
Generating Levels That Teach Mechanics
Michael Cerny Green
mcgreentn@gmail.com

Tandon School of Engineering,
New York University
New York City, NY

Ahmed Khalifa
ahmed.khalifa@nyu.edu

Tandon School of Engineering,
New York University
New York City, NY

Gabriella A. B. Barros
gabbbarros@gmail.com

Tandon School of Engineering,
New York University
New York City, NY

Andy Nealen
andy@nealen.net

Tandon School of Engineering,
New York University
New York City, USA

Julian Togelius
julian@togelius.com

Tandon School of Engineering,
New York University
New York City, NY

ABSTRACT
The automatic generation of game tutorials is a challenging AI
problem. While it is possible to generate annotations and instruc-
tions that explain to the player how the game is played, this paper
focuses on generating a gameplay experience that introduces the
player to a game mechanic. It evolves small levels for the Mario AI
Framework that can only be beaten by an agent that knows how to
perform specific actions in the game. It uses variations of a perfect
A* agent that are limited in various ways, such as not being able to
jump high or see enemies, to test how failing to do certain actions
can stop the player from beating the level.

CCS CONCEPTS
• Theory of computation → Evolutionary algorithms; • Ap-
plied computing→ Computer games;

KEYWORDS
Super Mario Bros, Search Based Level Generation, Feasible Infeasi-
ble 2-Population

ACM Reference Format:
Michael Cerny Green, Ahmed Khalifa, Gabriella A. B. Barros, Andy Nealen,
and Julian Togelius. 2018. Generating Levels That Teach Mechanics. In Foun-
dations of Digital Games 2018 (FDG18), August 7–10, 2018, Malmø, Sweden.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3235765.3235820

1 INTRODUCTION
The prolific use of games as a testbed for artificial intelligence (AI)
has brought forth several roles for AI techniques in this setting,
such as player, generator and evaluator [40]. A recently proposed
role is AI as a teacher, essentially meaning the use of algorithms to
automatically generate game tutorials [15]. Tutorials are one of the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FDG18, August 7–10, 2018, Malmø, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6571-0/18/08.
https://doi.org/10.1145/3235765.3235820

most important parts of a game, often being the player’s first game-
play experience. It can come in the form of text, demonstrations or
even gameplay itself. Commercial games often build the tutorial
into a level or a series of levels, as exemplified by Super Mario Bros
(Nintendo, 1985) (SMB) and Super Meat Boy (Team Meat, 2010).

As important as tutorials are, they are also frequently relegated
to the end of the development process and overlooked in favor
of keeping the product’s release date or decreasing expenses [28].
More often than not, this is due to avoid constantly changing the
tutorial as game mechanics and features evolve throughout devel-
opment. Thus, the ability to automatically generate tutorial levels
could benefit video game designers and developers, decreasing the
cost and time required to build a game.

This paper tackles the challenge of automatically generating
game tutorials. We hypothesized that if a perfect agent, which
knows all game mechanics, wins a level while an agent that cannot
perform one mechanic loses or cannot finish the same level, then
that level can be used to teach a player that mechanic. Unlike
previous work that focuses on the instructional side of tutorials [2],
we focused on creating an experience that will teach the player
during gameplay, by posing challenges that they can only overcome
when using the mechanics we wanted to teach. We used the Mario
AI Framework [17] as our testbed. We also used variations of an
A* agent, limited in different ways, to evaluate levels generated by
an evolutionary algorithm. The catch, however, is that we want
to evolve levels that one limited variant cannot win, while the
others can. Our objective is to evolve levels that can only be beaten
by using the mechanic that limits the agent it was tailored to, e.g.
jumping high on a level that a Mario agent which can only do the
short jump is unable to win. The following sections describe the
background of this research, our methods, experiments and results.

2 RELATEDWORK
This section discusses frameworks and research relevant to our
work. It starts with a description of the Mario AI framework, fol-
lowed by a brief background on search based level generation and
level generation for the Mario AI framework, and concluding with
tutorials and tutorial generation.

https://doi.org/10.1145/3235765.3235820
https://doi.org/10.1145/3235765.3235820


FDG18, August 7–10, 2018, Malmø, Sweden M. Green et al.

2.1 Mario AI Framework
Infinite Mario Bros. (IMB), developed by Markus Persson [27], is a
public domain clone of the 2D platform classic game Super Mario
Bros.. The gameplay of IMB consists ofmoving on a two-dimensional
sideway level towards a goal. The player can be in one of three
possible states: small, big and fire. They can also move left and
right, jump, run, and (when on the fire state) shoot fireballs. The
player returns to the previous state if they take damage, and dies
when taking damage while on the small state or falling down a gap.
Unlike the original game, IMB allows for automatic generation of
levels.

The Mario AI framework has been a popular benchmark for
research on artificial intelligence [17]. Based on the IMB, it has
been popular ground for AI competitions [17, 37]. It improved
on limitations of IMB’s level generator, and several techniques
have been applied to automatically create levels [29, 33] or to play
levels [17].

2.2 Search Based Level Generation
Evolutionary algorithms (EA) are a type of optimization search
inspired by Darwinian evolutionary concepts such as reproduc-
tion, fitness, and mutation [38]. Evolution can be used within the
realm of games for various purposes, including the generation of
levels and game elements within them. Ashlock used evolution to
optimize puzzle generation for a given level of difficulty [4]. The
fitness function measured solution length which was found using a
dynamic programming algorithm. Later, Ashlock et al. developed a
system which could parameterize this fitness function into check-
point based fitness [6], allowing substantial control over generated
maze properties. Ashlock proceeded to build a system which gen-
erated cave-like level maps using evolvable fashion-based cellular
automata [5], i.e. stylized cave generation. Ashlock also created a
system which decomposes level generation into two parts, a micro
evolutionary systemwhich evolves individual tile sections of a level,
and an overall macro generation system which evolves placement
patterns for the tiles [25].

Khalifa et al. used evolutionary search for general level genera-
tion in multiple domains such as General Video Game AI [21] and
PuzzleScript [18]. In later work by Khalifa et al. [20], they worked
on generating levels for a specific game genre (Bullet Hell genre)
using a new hybrid evolutionary search called Constrained Map-
Elites. The levels were generated using automated playing agents
with different parameters to mimic various human play-styles. Khal-
ifa et al. [19] also offered a literature review of search based level
generation within puzzle games.

2.3 Level Generation for the Mario AI
Framework

Horne et al. [16] compiled an evaluative list of all Mario AI genera-
tors. The Notch and Parameterized-Notch generators write levels
from left to right, adding game elements through probability and
performing basic checks to ensure playability [30]. Hopper was
written for the Level Generation track of the 2010 Mario AI Champi-
onship. Much like Notch and Parameterized-Notch, it also designs
levels from left to right, adding game elements through probability.
However, these probabilities adapt to player performance, resulting

in a dynamic level generator [29]. Launchpad is a rhythm-based
level generator that uses design grammars for creating levels within
rhythmical constraints [32]. The Occupancy-Regulated Extension
generator works by placing small hand-authored chunks together
into levels [29]. Each chunk contains an anchor point to determine
how chunks are placed together. The Pattern-based generator uses
evolutionary computation to generate levels by representing lev-
els as slices taken from the original Super Mario Bros (Nintendo,
1985) [9]. The fitness function counts the number of occurrences of
specified sections of slices, or “meso-patterns”, with the objective
to find as many meso-patterns as possible. The Grammatical Evolu-
tion generator uses evolutionary computation together with design
grammars. It represents levels as instructions for expanding design
patterns. The fitness function measures the number of items in the
level and the number of conflicts between the placement of these
items.

2.4 Tutorials
Most video games contain tutorials in some way, whether they are
ingrained within the gameplay or kept separate from it. Green et
al. [15] proposed a non-exhaustive list of tutorial types: Instruction-
based, Demonstration-based, and a Well-designed Experience. In-
struction-based tutorials are textual in nature: A pop-up may appear
in front of the player during gameplay describing the next step to
take, or a board game may come with a booklet explaining the
rules in detail. Demonstration-based tutorials take control from the
player, such as an non-player character acting out the next step. An
example can be found in The Elder Scrolls: Skyrim (Bethesda, 2011)
when the player first learns the shout ability. The Well-Designed
Experience tutorials are the most complex of the three, where the
tutorial is built into the level and gameplay itself and not treated
as a separate component. Levels in Super Meat Boy (Team Meat,
2010) demonstrate this tutorial type as the player learns new game
mechanics and navigation techniques while playing.

Sheri Graner Ray wrote about knowledge acquisition styles of
players could use to divide tutorials into two categories: exploratory
andmodeling [28]. Exploratory tutorials have the player learn about
something by doing it, whereasmodeling tutorials focus on allowing
the player to study how to do something before doing it.

Often to better understand games, their mechanics, and to create
tutorials to teach them, designers create languages with which to
model games. Dan Cook [7] described a skill atom: the feedback
loop through which a player learns a new skill during gameplay.
Figure 1 shows a skill atom to learn how to jump. A skill atom can
be divided into four separate elements:

• The Action the player performs to learn a new skill. This
could involve anything from pressing a button or doing a
complex series of actions to accomplish an end goal.

• The Simulation of that action in game. The player’s action
somehow affects the world.

• The Feedback from the simulation informs the player of
the new state of the game, so they know how their action
changed the world.

• The Modeling the player now performs within their head,
mapping the action they just took to the feedback from the



Generating Levels That Teach Mechanics FDG18, August 7–10, 2018, Malmø, Sweden

Figure 1: A skill atom for learning how to jump in any
generic game, in the order of action (button), simulation
(jump and collide), feedback (animation on screen), andmod-
eling (“I can jump!”)1

simulation, e.g. “If I press this button, my character jumps
up.”

Skill atoms can be linked to other skill atoms to form skill chains
as shown in Figure 2. Using skill chains, one could model most
games that exist.

A similar concept to the skill atom is the strategy ladder. Video
games could be represented as the strategy required to beat them.
Each step in a strategy ladder corresponds to an addition to the
strategy of the previous step that makes a noticeable difference in
the strength of that strategy. It has been proposed that the depth of a
game can be defined as the length of its longest strategy ladder [23].
Then, by reading or interacting with a strategy ladder, one should
be able to understand, theoretically, the requirements of a game.

The AtDelfi system uses a graph-based representation to model
mechanics in a game [14]. Object nodes, condition nodes, and ac-
tion nodes are used in unison to describe player abilities, object
collisions, scoring, and time-based mechanics. The system creates
this graph dynamically after reading a game’s rules, which are for-
mulated using the Video Game Description Language (VGDL) [13].
VGDL is a high-level language for 2D arcade games, allowing not
only the quick development for these games but also analysis of
game rules and events. With this graph, the system can then gener-
ate written and visual tutorials demonstrating ways to win, lose,
and gain points in the game.

2.5 Tutorial Generation
Previous work has been done in the area of tutorial/instruction
generation, such as TutorialPlan [24], which generates text and
image instructions for new users of AutoCAD. De Messentier Silva
et al [10–12] used various search methods to create effective begin-
ner strategies for Blackjack and Poker. Alexander et al. [1] turned
Minecraft (Mojang 2009) mechanics into action graphs representing
the player experience, and created quests and achievements based
off those actions. Game-O-Matic [39] generates arcade style games

Figure 2: A chain of skill atoms demonstrating the action
process through which a player learns platform jumping
during gameplay

and instructions using a story-based concept-map. It generates a
tutorial page after a game’s creation which explains who the player
will control, how to control them, andwinning/losing conditions, by
using the concept-map and relationships between objects within it.
Mechanic Miner can automatically discover new mechanics using a
reflection-driven generation technique using game simulation, and
then invert the simulation to produce levels for those discovered
mechanics [8].

Mappy is a systemwhich takes a Nintendo Entertainment System
game and a sequence of buttons presses as input to generate an
approximation of a linked map of rooms [26]. Mappy attempts
to create map understanding from movement mechanics. This is
similar to what Summerville et al. created as a part of the Gemini
system, a logic program that performs static reasoning over game
specifications in order to find meaning [34].



FDG18, August 7–10, 2018, Malmø, Sweden M. Green et al.

(a) Level 1-1

(b) Level 1-2

Figure 3: The first two levels from Super Mario Bros. The lev-
els show the difference between overground levels (3a) and
underground levels (3b).

3 METHODS
Our system evolves a single screen that teaches a specific mechanic
for the Mario AI framework, utilizing several AI playthroughs to
find screens that an AI that has full game knowledge can beat, but
a limited AI cannot.

In this work, a Mario level consists of a group of scenes, where
each scene delivers a specific experience, such as a single jump,
killing an enemy, etc [3]. Each scene is represented as a group of ver-
tical slices sampled from the original Super Mario Bros (SMB), much
like in Dahlskog and Togelius’ work [9]. Each slice has a fixed width
and height, equal to 1 and 14 respectively. We collected slices from
the levels provided in the Video Game Level Corpus (VGLC) [35],
excluding underground levels as they differ structurally from the
rest of the levels. Figure 3 shows part of the the first two levels from
SMB: Level 1-1 and Level 1-2. Underground levels (Figure 3b) have
a ceiling on the top of the level. Thus, combining different slices
from both levels would generate an inconsistent scene. Additionally,
having a ceiling causes problems with the Mario AI framework: the
Mario AI framework spawns Mario at the highest solid tile at the
beginning of the scene. In an underground level, the framework
would spawn Mario on the ceiling instead of on the floor.

Table 1: A* Agent Limitations

Agent Limitation
B A* No limitation. Perfect Agent.
LJ A* Limited jumping capabilities. Cannot jump ‘high.’
EB A* Blind to all enemies. Unable to see enemy collisions.
NR A* Not able to run. Indirectly limits ‘long jump’ capability.

3.1 Evolutionary Algorithm
We used the Feasible Infeasible 2-Population (FI-2Pop) genetic algo-
rithm [22] to generate scenes. FI-2Pop is an evolutionary algorithm
that uses two populations: one being feasible and the other infeasi-
ble. The infeasible population aims at improving infeasible solutions
to a certain threshold, when they become feasible and are transfered
to the feasible population. The feasible population, on the other
hand, aims at improving the quality of feasible chromosomes, If one
becomes infeasible, it is then relocated to the infeasible population.
After evolving solutions for several generations, our system outputs
the scene with the highest fitness.

For the purposes of this work, we assumed that a scene is equiv-
alent to one screen in the Mario AI framework, which consists of 18
slices. Therefore, our chromosome consists of a group of 18 vertical
slices. We used a two-point crossover and mutation as operators:
a two-point crossover switches a group of slices between the two
points, allowing the evolutionary algorithm to swap any length
from a single slice to the whole scene. For mutation, the algorithm
replaces one slice with a random one from the sampled slices.

3.2 Evaluating Scenes
We used two different fitness functions, one for the infeasible pop-
ulation and one for the feasible population. These are described in
detail below.

Infeasible Fitness: The fitness function of the infeasible pop-
ulation regards only the levels aesthetic. One of the impassable
obstacles in Super Mario Bros is a green pipe. It can have any height
and it takes two tiles in width. Since the chromosome consists of
a group of vertical slices where each slice is 1 tile in length, there
is a high chance that a half pipe might appear in the scene. The
infeasible fitness function makes sure that all the pipe are two tiles
wide. Figure 4a shows a chromosome with an infeasible fitness
equal to 0, where the pipe parts do not connect correctly. Figure 4b
shows a chromosome with an infeasible fitness equal to 1, where all
the pipe pieces connect in pairs. Chromosomes that don’t have any
pipes are considered feasible chromosomes with infeasible fitness
equal to 1.

Feasible Fitness: Our system uses agent performance data to
gauge the fitness of a level. One of these agents is an A* agent de-
signed by Robin Baumgarten for the first Mario AI competition [36],
capable of playing a level almost flawlessly. The heuristic this agent
is based on is the time it would take for Mario to move to the end
of the level (i.e. the rightmost side of the map), which is admissible
because it assumes that Mario is always running at maximum speed.
The other agents are variations of Baumgarten’s A* agent, limited
in different ways. These limitation are summarized in Table 1.



Generating Levels That Teach Mechanics FDG18, August 7–10, 2018, Malmø, Sweden

(a) Infeasible Fitness = 0.0

(b) Infeasible Fitness = 1.0

Figure 4: Two generated chromosomes, one from the infea-
sible population and one from the feasible population. The
first chromosome in (4a) has infeasible fitness equal to 0.0,
while the second chromosome in (4b) has infeasible fitness
equal to 1.0, thus belonging to the feasible population.

Our evolutionary algorithm takes one of the limited agents and
the perfect agent to evaluate a level, comparing their success and/or
failure. We hypothesized that a level requires the use of an specific
mechanic that a limited agent lacks if the perfect agent wins the
level but the limited agent fails. Therefore, our fitness function
maximized the distance between the limited agent’s failure and the
perfect agent’s success.

4 RESULTS
We ran three experiments, each with a population of 100 chromo-
somes evolved for 120 generations. The crossover rate was fixed
to 70% and the mutation rate was fixed to 30%, and we used rank
selection. Rank selection gives each chromosome a rank based on

0 20 40 60 80 100 120
Generation Number

0.0

0.2

0.4

0.6

0.8

1.0

M
ax

im
um

 F
ea

sib
le

 F
itn

es
s

EB A*
LJ A*
NR A*

Figure 5: Maximum feasible fitness increases throughout
generations

0 20 40 60 80 100 120
Generation Number

0

20

40

60

80

100

Nu
m

be
r o

f F
ea

sib
le

 C
hr

om
os

om
es

EB A*
LJ A*
NR A*

Figure 6: Number of feasible chromosomes throughout gen-
erations.

its fitness and then select chromosomes proportionally towards
their rank, i.e. higher rank indicate a higher probability of being
chosen. We also used elitism of size of 1 between generations to
keep the best chromosome.

Figure 5 shows the maximum feasible fitness over generations
for each different evolution. In every experiment, there was a quick
increase in the fitness function in the first few iterations, reaching
the highest found value of 0.8 after approximately 15 generations,
with no further improvement. We believe that 0.8 is the highest
fitness our system can achieve, reflecting that the perfect agent
finished the scene (i.e. the scene was 100% traversed) while the
limited agent only traversed 20% of the scene before it died or got
stuck.

Figure 6 shows the number of feasible chromosomes throughout
the 120 generations. Surprisingly, the numbers vary as opposed
to only increasing as generations pass. It is possible that, once
the evolution finds the chromosomes with the highest fitnesses in
the first 20 generations and shows the highest amount of feasible
chromosomes, it becomes difficult for the system to find better



FDG18, August 7–10, 2018, Malmø, Sweden M. Green et al.

ones without separating pipes in feasible scenes, thus making them
infeasible.

Figure 7 displays the evolved scenes from the three combinations
of perfect and limited agents. Each level was played by the limited
agent used to create it. In each case, the limited agent in question
failed to beat the level, thus verifying that the specific mechanic
was needed. Each column shows three scenes evolved with one
of our different limited agents, and each row shows three evolved
scenes that have high (top) to low (bottom) fitness. The last row
shows feasible chromosomes with fitness equal to 0.0, meaning
that both agents can beat the levels.

It is possible to notice that scenes with higher fitness focuses
more on the intended experience. Figure 7a requires high jumps
at the first section that cannot be overcome by the Limited Jump
agent, Figure 7b has a high amount of enemies in when compared
to the other images, and Figure 7c has a wall jump at the beginning
that can only be climbed while holding the run button. A member
of our team also played the highest fitness scenes to get a subjective
human-evaluation. In each case, we observed that they needed to
have knowledge of and use the specific mechanic for the given
level, although with varying degrees of success. The following
subsections further analyze the top three maps shown in Figure 7.

4.1 LJ Agent Scene
Figure 7a shows the level evolved with the LJ Agent, wherein the
player had to perform two high jumps to beat the level. If they
wanted to test themselves, a third high jump could be done to
acquire a coin right before the goal. A mystery block was also
included, but wasn’t necessary to hit to complete the level.

4.2 EB Agent Scene
For the map evolved with the EB Agent shown in Figure 7b, the
player faced three enemies: two goombas and one red turtle. It is
an interesting example, as it shows a level that only scores a high
fitness function due to the level of proficiency of the A* agent. Due
to the rules of the game engine, enemies are capable of falling off
cliffs and ledges. Thus, unless the player immediately moved to
the right, they would never actually encounter these enemies, as
the enemies would fall of the ledge at the very beginning of the
game. After observing the EB agent playthrough, we realized that
the super-human reflexes of the agent allowed it to die to these
enemies and thus fail the level anyway.

4.3 NR Agent Scene
Finally, in the level evolved for the NR Agent (Figure 7c), the player
faced an extremely high wall at the very beginning of the map. In
order to climb it, the player would have to run at the wall and wall
jump right around the dirt tile. This requires incredible precision,
which a novice player would probably not have. The following gap
requires the player to jump from the first column to the second
while running, again requiring precision not found among begin-
ners. If the player failed this jump, they would fall into the gap
between the two walls and would have to climb the first wall again.

5 DISCUSSION & CONCLUSION
This paper evolved small levels (scenes) for the Mario AI frame-
work that teach specific mechanics. It used a feasible infeasible
2-population evolutionary algorithm, which uses multiple auto-
mated playthroughs as the fitness function. We hypothesized that
finding levels where a perfect agent (i.e. an agent that has full
knowledge of all the game mechanics) wins and a limited agent (i.e.
an agent that lacks information about a certain mechanic) dies or
gets stuck can teach an specific mechanic. We used three different
variants of Robin Baumgarten A* algorithm to communicate three
different mechanics: Long Jumps, Stomping Enemies, and Running.
The evolutionary algorithm was able to find high fitness scenes in
its first 15 generations. The best evolved level in each experiment
was subjectively playtested and only possible to beat using a spe-
cific mechanic that the agent was missing. However, one of the
drawbacks of using Robin Baumgarten A* algorithm is that it has
superhuman reflexes, thus the evolved levels require very precise
movements that aren’t easy to achieve by a novice player.

We originally set out to explore idea of discovering sections
of maps which required the use (and therefore the mastery) of a
mechanic to beat them. To that end, we succeeded. Each of the maps
we generated demonstrated that a player, AI or human, would have
to use the specified mechanic to win. However, the AI had the added
benefit of pixel perfect gameplay and inhuman reflexes. Because of
this, these maps are too difficult for a human to play and therefore
are inadequate for teaching a human these mechanics.

One such example of this is in the EB Agent scene, where all
enemies encountered would almost immediately fall off the map at
the game’s beginning. Unless the player moved to the right, they
would never encounter these enemies, and they would therefore
never learn what kind of mechanics interacting with these ene-
mies represent. The NR Agent scene, which contains wall-jumps
necessary to beat the level, also exemplifies this problem. A more
advanced player might be able to perform a wall jump, but a novice
player would most likely not be able to do this. We can therefore
conclude from this that our experiment, while producing maps that
required desired mechanics from an AI viewpoint, did not take
human perspective into account.

This work is a stepping stone towards evolving full levels that
can teach players the different game mechanics, both in Super Mario
Bros and other games. A next approach would use an evolutionary
algorithm to arrange the evolved scenes to have a full-length game
level, similar to Level 1-1 in Super Mario Bros. The scenes have
to be arranged in increasing difficulty order, as to not overwhelm
new players. Another improvement would be to use human-like
agents instead of the perfect A* agent, in order to generate more
human like scenes that don’t require superhuman reflexes to beat.
We also intend on improving generated scenes by running another
evolutionary algorithm that tries to simplify the generated scenes,
by decreasing the number of used blocks, without decreasing the
fitness of the scene as the generated scenes have multiple blocks
that do not have a purpose in the playthrough.

Another potential step forward would be to move away from
an evolutionary algorithm and use a constraint solving approach.
Smith et al’s Refraction (Center for Game Science at the University
of Washington, 2010) level generators use answer set programming



Generating Levels That Teach Mechanics FDG18, August 7–10, 2018, Malmø, Sweden

(a) Evolved Scene with LJ Agent. Fitness 0.86 (b) Evolved Scene with EB Agent. Fitness 0.85 (c) Evolved Scene with NR Agent. Fitness 0.86

(d) Evolved Scene with LJ Agent. Fitness 0.64 (e) Evolved Scene with EB Agent. Fitness 0.47 (f) Evolved Scene with NR Agent. Fitness 0.03

(g) Evolved Scene with LJ Agent. Fitness 0.0 (h) Evolved Scene with EB Agent. Fitness 0.0 (i) Evolved Scene with NR Agent. Fitness 0.0

Figure 7: Evolved Scenes Using Perfect vs Limited Agents

to easily control level features [31]. Refraction is an educational
puzzle game in which players arrange devices on a grid to construct
networks of laser beams. By requiring the player to use beams of
different power levels, the game aims to teach mathematical skills.
Similar to Smith’s work, it might be possible to add mechanics as
constraints within a generator in order to require the use of those
mechanics to win a level.

ACKNOWLEDGMENTS
Gabriella Barros acknowledges financial support from CAPES and
Science Without Borders program, BEX 1372713-3, as well as an
NYU Tandon School of Engineering Fellowship. Ahmed Khalifa
acknowledges the financial support from NSF grant (Award num-
ber 1717324 - "RI: Small: General Intelligence through Algorithm

Invention and Selection."). Michael Cerny Green acknowledges the
financial support of the GAANN program.

REFERENCES
[1] Ryan Alexander and Chris Martens. 2017. Deriving Quests from Open World

Mechanics. arXiv preprint arXiv:1705.00341 (2017).
[2] Anonymouns. Anonymouns. Anonymouns.
[3] Anna Anthropy and Naomi Clark. 2014. A game design vocabulary: Exploring the

foundational principles behind good game design. Pearson Education.
[4] Daniel Ashlock. 2010. Automatic generation of game elements via evolution.

In Computational Intelligence and Games (CIG), 2010 IEEE Symposium on. IEEE,
289–296.

[5] Daniel Ashlock. 2015. Evolvable fashion-based cellular automata for generat-
ing cavern systems. In Computational Intelligence and Games (CIG), 2015 IEEE
Conference on. IEEE, 306–313.

[6] Daniel Ashlock, Colin Lee, and Cameron McGuinness. 2011. Search-based pro-
cedural generation of maze-like levels. IEEE Transactions on Computational
Intelligence and AI in Games 3, 3 (2011), 260–273.

[7] Dan Cook. 2007. The chemistry of game design.



FDG18, August 7–10, 2018, Malmø, Sweden M. Green et al.

[8] Michael Cook, Simon Colton, Azalea Raad, and Jeremy Gow. 2013. Mechanic
miner: Reflection-driven game mechanic discovery and level design. In European
Conference on the Applications of Evolutionary Computation. Springer, 284–293.

[9] Steve Dahlskog and Julian Togelius. 2013. Patterns as objectives for level genera-
tion. (2013).

[10] Fernando de Mesentier Silva, Aaron Isaksen, Julian Togelius, and Andy Nealen.
2016. Generating heuristics for novice players. In Computational Intelligence and
Games (CIG), 2016 IEEE Conference on. IEEE, 1–8.

[11] Fernando deMesentier Silva, Julian Togelius, Frank Lantz, and Andy Nealen. 2018.
Generating Beginner Heuristics for Simple Texas HoldâĂŹem. In Proceedings of
The Genetic and Evolutionary Computation Conference. ACM.

[12] Fernando deMesentier Silva, Julian Togelius, Frank Lantz, and Andy Nealen. 2018.
Generating Novice Heuristics for Post-Flop Poker. In Computational Intelligence
and Games (CIG). IEEE.

[13] Marc Ebner, John Levine, Simon M Lucas, Tom Schaul, Tommy Thompson, and
Julian Togelius. 2013. Towards a video game description language. In Dagstuhl
Follow-Ups, Vol. 6. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[14] Michael Cerny Green, Ahmed Khalifa, Gabriella A. B. Barros, Tiago Machado,
Julian Togelius, and Andy Nealen. 2018. AtDELFI: Automatically Designing
Legible, Full Instructions For Games.

[15] Michael Cerny Green, Ahmed Khalifa, Gabriella A. B. Barros, and Julian Togelius.
2017. “Press Space To Fire”: Automatic Video Game Tutorial Generation.

[16] Britton Horn, Steve Dahlskog, Noor Shaker, Gillian Smith, and Julian Togelius.
2014. A comparative evaluation of procedural level generators in the mario ai
framework. Society for the Advancement of the Science of Digital Games.

[17] Sergey Karakovskiy and Julian Togelius. 2012. The mario ai benchmark and
competitions. IEEE Transactions on Computational Intelligence and AI in Games 4,
1 (2012), 55–67.

[18] Ahmed Khalifa and Magda Fayek. 2015. Automatic puzzle level generation: A
general approach using a description language. In Computational Creativity and
Games Workshop.

[19] Ahmed Khalifa and Magda Fayek. 2015. Literature Review of Procedural
Content Generation in Puzzle Games. http://www.akhalifa.com/documents/
LiteratureReviewPCG.pdf.

[20] Ahmed Khalifa, Scott Lee, Andy Nealen, and Julian Togelius. 2018. Talakat: Bullet
Hell Generation through Constrained Map-Elites. In Proceedings of The Genetic
and Evolutionary Computation Conference. ACM.

[21] Ahmed Khalifa, Diego Perez-Liebana, Simon M Lucas, and Julian Togelius. 2016.
General video game level generation. In Proceedings of the Genetic and Evolution-
ary Computation Conference 2016. ACM, 253–259.

[22] Steven Orla Kimbrough, Gary J Koehler, Ming Lu, and David Harlan Wood.
2008. On a Feasible–Infeasible Two-Population (FI-2Pop) genetic algorithm for
constrained optimization: Distance tracing and no free lunch. European Journal
of Operational Research 190, 2 (2008), 310–327.

[23] Frank Lantz, Aaron Isaksen, Alexander Jaffe, Andy Nealen, and Julian Togelius.
2017. Depth in strategic games. under review.

[24] Wei Li, Yuanlin Zhang, and George Fitzmaurice. 2013. TutorialPlan: automated
tutorial generation from CAD drawings. In Twenty-Third International Joint
Conference on Artificial Intelligence.

[25] Cameron McGuinness and Daniel Ashlock. 2011. Decomposing the level genera-
tion problem with tiles. In Evolutionary Computation (CEC), 2011 IEEE Congress
on. IEEE, 849–856.

[26] Joseph Osborn, Adam Summerville, and Michael Mateas. 2017. Automatic map-
ping of NES games with mappy. In Proceedings of the 12th International Conference
on the Foundations of Digital Games. ACM, 78.

[27] Marcus Persson. 2008. Infinite mario bros. Online Game). Last Accessed: December
11 (2008).

[28] Sheri Graner Ray. 2010. Tutorials: Learning to play. http://www.gamasutra.com/
view/feature/134531/tutorials_learning_to_play.php.

[29] Noor Shaker, Julian Togelius, Georgios N Yannakakis, Ben Weber, Tomoyuki
Shimizu, Tomonori Hashiyama, Nathan Sorenson, Philippe Pasquier, Peter
Mawhorter, Glen Takahashi, et al. 2011. The 2010 Mario AI championship:
Level generation track. IEEE Transactions on Computational Intelligence and AI
in Games 3, 4 (2011), 332–347.

[30] Noor Shaker, Georgios N Yannakakis, and Julian Togelius. 2011. Feature analysis
for modeling game content quality. In Computational Intelligence and Games
(CIG), 2011 IEEE Conference on. IEEE, 126–133.

[31] Adam M Smith, Erik Andersen, Michael Mateas, and Zoran Popović. 2012. A case
study of expressively constrainable level design automation tools for a puzzle
game. In Proceedings of the International Conference on the Foundations of Digital
Games. ACM, 156–163.

[32] Gillian Smith, Jim Whitehead, Michael Mateas, Mike Treanor, Jameka March, and
Mee Cha. 2011. Launchpad: A rhythm-based level generator for 2-d platformers.
IEEE Transactions on computational intelligence and AI in games 3, 1, 1–16.

[33] Nathan Sorenson and Philippe Pasquier. 2010. Towards a generic framework for
automated video game level creation. In European Conference on the Applications
of Evolutionary Computation. Springer, 131–140.

[34] Adam Summerville, Chris Martens, Sarah Harmon, Michael Mateas, Joseph Carter
Osborn, NoahWardrip-Fruin, and Arnav Jhala. 2017. FromMechanics toMeaning.
IEEE Transactions on Computational Intelligence and AI in Games.

[35] Adam James Summerville, Sam Snodgrass, Michael Mateas, and Santiago
Ontanón. 2016. The vglc: The video game level corpus. arXiv preprint
arXiv:1606.07487 (2016).

[36] Julian Togelius, Sergey Karakovskiy, and Robin Baumgarten. 2010. The 2009
mario ai competition. In Evolutionary Computation (CEC), 2010 IEEE Congress on.
IEEE, 1–8.

[37] Julian Togelius, Noor Shaker, Sergey Karakovskiy, and Georgios N Yannakakis.
2013. The mario ai championship 2009-2012. AI Magazine 34, 3 (2013), 89–92.

[38] Julian Togelius, Noor Shaker, and Mark J. Nelson. 2016. The search-based ap-
proach. In Procedural Content Generation in Games: A Textbook and an Overview
of Current Research, Noor Shaker, Julian Togelius, and Mark J. Nelson (Eds.).
Springer, 17–30.

[39] Mike Treanor, Bryan Blackford, Michael Mateas, and Ian Bogost. 2012. Game-O-
Matic: Generating Videogames that Represent Ideas.. In PCG@ FDG. 11–1.

[40] Georgios N. Yannakakis and Julian Togelius. 2018. Artificial Intelligence and
Games. Springer. http://gameaibook.org.

http://www.akhalifa.com/documents/LiteratureReviewPCG.pdf
http://www.akhalifa.com/documents/LiteratureReviewPCG.pdf
http://www.gamasutra.com/view/feature/134531/tutorials_learning_to_play.php
http://www.gamasutra.com/view/feature/134531/tutorials_learning_to_play.php
http://gameaibook.org

	Abstract
	1 Introduction
	2 Related Work
	2.1 Mario AI Framework
	2.2 Search Based Level Generation
	2.3 Level Generation for the Mario AI Framework
	2.4 Tutorials
	2.5 Tutorial Generation

	3 Methods
	3.1 Evolutionary Algorithm
	3.2 Evaluating Scenes

	4 Results
	4.1 LJ Agent Scene
	4.2 EB Agent Scene
	4.3 NR Agent Scene

	5 Discussion & Conclusion
	Acknowledgments
	References

