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Abstract—General Video Game Playing (GVGP) aims at
designing an agent that is capable of playing multiple video
games with no human intervention. In 2014, The General Video
Game AI (GVGAI) competition framework was created and
released with the purpose of providing researchers a common
open-source and easy to use platform for testing their AI
methods with potentially infinity of games created using Video
Game Description Language (VGDL). The framework has been
expanded into several tracks during the last few years to meet the
demand of different research directions. The agents are required
either to play multiple unknown games with or without access
to game simulations, or to design new game levels or rules.
This survey paper presents the VGDL, the GVGAI framework,
existing tracks, and reviews the wide use of GVGAI framework
in research, education and competitions five years after its birth.
A future plan of framework improvements is also described.

Index Terms—Computational intelligence, artificial intelli-
gence, games, general video game playing, GVGAI, video game
description language

I. INTRODUCTION

Game-based benchmarks and competitions have been used
for testing artificial intelligence capabilities since the inception
of the research field. Since the early 2000s a number of
competitions and benchmarks based on video games have
sprung up. So far, most competitions and game benchmarks
challenge the agents to play a single game, which leads to
an overspecialization, or overfitting, of agents to individual
games. This is reflected in the outcome of individual com-
petitions – for example, over the more than five years the
Simulated Car Racing Competition [1]1 ran, submitted car
controllers got better at completing races fast, but incorporated
more and more game-specific engineering and arguably less
of general AI and machine learning algorithms. Therefore,
this trend threatens to negate the usefulness of game-based
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AI competitions for spurring and testing the development of
stronger and more general AI.

The General Video Game AI (GVGAI) competition [3] was
founded on the belief that the best way to stop AI researchers
from relying on game-specific engineering in their agents
is to make it impossible. Researchers would develop their
agents without knowing what games they will be playing, and
after submitting their agents to the competition all agents are
evaluated using an unseen set of games. Every competition
event requires the design of a new set of games, as reusing
previous games would make this task impossible.

While the GVGAI competition was initially focused on
benchmarking AI algorithms for playing the game, the compe-
tition and its associated software has multiple uses. In addition
to the competition tracks dedicated to game-playing agents,
there are now tracks focused on generating game levels or
rules. There is also the potential to use GVGAI for game
prototyping, with a rapidly growing body of research using
this framework for everything from building mixed-initiative
design tools to demonstrating new concepts in game design.

The objective of this paper is to provide an overview of
the different efforts from the community on the use of the
GVGAI framework (and, by extension, of its competition) for
General Game Artificial Intelligence. This overview aims at
identifying the main approaches that have been used so far for
agent AI and procedural content generation (PCG), in order to
compare them and recognize possible lines of future research
within this field. The paper starts with a brief overview of the
framework and the different competition tracks, for context
and completeness, which summarizes work published in other
papers by the same authors. The bulk of the paper is centered
in the next few sections, which are devoted to discussing
the various kinds of AI methods that have been used in the
submissions to each track. Special consideration is given to
the single-player planning track, as it has existed for longest
and received the most submissions up to date. This is followed
by a section cataloguing some of the non-competition research
uses of the GVGAI software. The final few sections provide a
view on the future use and development of the framework and
competition: how it can be used in teaching, open research
problems (specifically related to the planning tracks), and the
future evolution of the competition and framework itself.



Fig. 1. Examples of VGDL games. From top to bottom, left to right:
Butterflies, Escape, Crossfire and Wait for Breakfast.

II. THE GVGAI FRAMEWORK

Ebner et al. [4] and Levine et al. [5] first described the need
and interest for such a framework that could accommodate a
competition for researchers to tackle the challenge of General
Video Game Playing (GVGP). The authors proposed the idea
of the Video Game Description Language (VGDL), which
later was developed by Schaul [6], [7] in a Python framework
for model-based learning and released the first game engine
in 2013. Years later, Perez-Liebana et al. [3] implemented a
version of Schaul’s initial framework in Java and organized
the first General Video Game AI (GVGAI) competition in
2014 [8], which employed games developed in VGDL. In the
following years, this framework was extended to accommodate
two-player games [9], [10], level [11], rule [12] generation,
and real-world physics games [13]. These competition tracks
accumulate hundreds of submissions. Furthermore, the GV-
GAI Framework and Competition have been used as tools for
research and education around the globe, including their usage
in taught modules, MSc and PhD dissertation projects (see
Section XI).

VGDL is a text description language that allows for the
definition of two-dimensional, arcade, grid-based physics and
(generally) stochastic games and levels. Originally designed
for single-player games, the language now admits 2-player
challenges. VGDL permits the definition of sprites (objects
within the game) and their properties (from speed and behavior
to images or animations) in the Sprite Set. Thus this set
defines the type of sprites that can take part in the game.
Their interactions are regulated in the Interaction Set, which
defines the rules that govern the effects of two sprites colliding
with each other. This includes the specification of score for
the games. The Termination Set defines how the game ends,
which could happen due to the presence or absence of certain
sprites or due to timers running out. Levels in which the games
can be played are defined also in text files. Each character
corresponds to one or more sprites defined in the Sprite
Set, and the correspondence between sprites and characters
is established in the Mapping Set. At the moment of writing,
the framework counts on 120 single-player and 60 two-player
games. Examples of VGDL games are shown in Figure 1.

VGDL game and level files are parsed by the GVGAI
framework, which defines the ontology of sprite types and

interactions that are allowed. The benchmark creates the game
that can be played either by a human or a bot. For the latter, the
framework provides an API that bots (or agents, or controllers)
can implement to interact with the game - hence GVGAI
bots can play any VGDL game provided. All controllers
must inherit from an abstract class within the framework and
implement a constructor and three different methods: INIT,
called at the beginning of every game; ACT, called at every
game tick and must return the next action of the controller;
and RESULT, called at the end of the game with the final state.

The agents do not have access to the rules of the game (i.e.
the VGDL description) but can receive information about the
game state at each tick. This information is formed by the
game status - winner, time step and score -, state of the player
(also referred to in this paper as avatar) - position, orientation,
resources, health points -, history of collisions and positions of
the different sprites in the game identified with a unique type
id. Additionally, sprites are grouped in categories attending to
their general behavior: Non-Player Characters (NPC), static,
movable, portals (which spawn other sprites in the game, or
behave as entry or exit point in the levels) and resources (that
can be collected by the player). Finally, each game has a
different set of actions available (a subset of left, right, up,
down, use and nil), which can also be queried by the agent.

In the planning settings of the framework (single- [8] and
two-player [10]), the bots can also use a Forward Model. This
allows the agent to copy the game state and roll it forward,
given an action, to reach a potential next game state. In these
settings, controllers have 1 second for initialization and 40ms
at each game tick as decision time. If the action to execute
in the game is returned between 40 and 50 milliseconds, the
game will play the move nil as a penalty. If the agent takes
more than 50 milliseconds to return an action, the bot will be
disqualified. This is done in order to keep the real-time aspect
of the game. In the two-player case, games are played by two
agents in a simultaneous move fashion. Therefore, the forward
model requires the agents to also supply an action for the other
player, thus facilitating research in general opponent modeling.
Two-player games can also be competitive or cooperative, a
fact that is not disclosed to the bots at any time.

The learning setting of the competition changes the infor-
mation that is given to the agents. The main difference with
the planning case is that no Forward Model is provided, in
order to foster research by learning to play in an episodic
manner [14]. This is the only setting in which agents can
be written not only in Java, but also in Python, in order to
accommodate for popular machine learning libraries written in
this language. Game state information (same as in the planning
case) is provided in a Json format and the game screen can be
observed by the agent at every game tick. Since 2018, Torrado
et al. [15] interfaced the GVGAI framework to the OpenAI
Gym environment.

The GVGAI framework can also be used for procedural
content generation (PCG). In the level generation setting [11],
the objective is to program a generator that can create playable
levels for any game received. In the rule generation case [12],
the goal is to create rules that allow agents to play in any level
received. The framework provides, in both cases, access to the



forward model so agents can be used to test and evaluate the
content generated.

When generating levels, the framework provides the gener-
ator with all the information needed about the game such as
game sprites, interaction set, termination conditions and level
mapping. Levels are generated in the form of 2d matrix of
characters, with each character representing the game sprites at
the specific location determined by the matrix. The challenge
also allows the generator to replace the level mapping with
a new one. When generating rules, the framework provides
the game sprites and a certain level. The generated games are
represented as two arrays of strings. The first array contains the
interaction set, while the second array contains the termination
conditions.

As can be seen, the GVGAI framework offers an AI
challenge at multiple levels. Each one of the settings (or
competition tracks) is designed to serve as benchmark for
a particular type of problems and approaches. The planning
tracks provide a forward model, which favors the use of
statistical forward planning and model-based reinforcement
learning methods. In particular, this is enhanced in the two-
player planning track with the challenge of player modeling
and interaction with other another agent in the game. The
learning track promotes research in model-free reinforcement
learning techniques and similar approaches, such as evolution
and neuro-evolution. Finally, the level and rule generation
tracks focus on content creation problems and the algorithms
that are traditionally used for this: search-based (evolution-
ary algorithms and forward planning methods), solver (SAT,
Answer Set Programming), cellular automata, grammar-based
approaches, noise and fractals.

III. THE GVGAI COMPETITION

For each one of the settings described in the previous
section, one or more competitions have been run. All GV-
GAI competition tracks follow a similar structure: games
are grouped in different sets (10 games on each set, with
5 different levels each). Public sets of games are included
in the framework and allow participants to train their agents
on them. For each year, there is one validation and one
test set. Both sets are private and stored in the competition
server2. Participants can submit their entries any time before
the submission deadline to all training and validation sets, and
preliminary rankings are displayed in the competition website
(the names of the validation set games are anonymous).

A. Game Playing Tracks

In the game playing tracks (planning and learning set-
tings), the competition rankings are computed by first sorting
all entries per game according to victory rates, scores and
game lengths, in this order. These per-game rankings award
points to the first 10 entries, from first to tenth position:
25, 18, 15, 12, 10, 8, 6, 4, 2 and 1. The winner of the com-
petition is the submission that sums more points across all
games in the test set. For a more detailed description of the

2www.gvgai.net; Intel Core i5 machine, 2.90GHz, and 4GB of memory.

TABLE I
WINNERS OF ALL EDITIONS OF THE GVGAI PLANNING COMPETITION.

2P INDICATES 2-PLAYER TRACK. HYBRID DENOTES 2 OR MORE
TECHNIQUES COMBINED IN A SINGLE ALGORITHM. HYPER-HEURISTIC
HAS A HIGH LEVEL DECISION MAKER TO DECIDES WHICH SUB-AGENT

MUST PLAY (SEE SECTION IV). TABLE EXTENDED FROM [16].

Contest Leg Winner Type Section
CIG-14 OLETS Tree Search Method IV-B [8]

GECCO-15 YOLOBOT Hyper-heuristic IV-E [17]
CIG-15 Return42 Hyper-heuristic IV-E [16]

CEEC-15 YBCriber Hybrid IV-D [18]
GECCO-16 YOLOBOT Hyper-heuristic IV-E [17]

CIG-16 MaastCTS2 Tree Search Method IV-B [19]
WCCI-16 (2P) ToVo2 Hybrid V-A [10]
CIG-16 (2P) Number27 Hybrid V-B [10]
GECCO-17 YOLOBOT Hyper-heuristic IV-E [17]

CEC-17 (2P) ToVo2 Hybrid V-A [10]
WCCI-18 (1P) YOLOBOT Hyper-heuristic IV-E [17]
FDG-18 (2P) OLETS Tree Search Method IV-B [10]

competition and its rules, the reader is referred to [8]. All
controllers are run on the test set after the submission deadline
to determine the final rankings of the competition, executing
each agent multiple times on each level.

1) Planning tracks: The first GVGAI competition ever held
featured the Single-player Planning track in 2014. A full
description of this competition can be found at [8]. 2015
featured three legs in a year-long championship, each one of
them with different validation and test sets. The Two-player
Planning track [9] was added in 2016, with the aim of testing
general AI agents in environments which are more complex
and present more direct player interaction [10]. Since then, the
single and two-player tracks have run in parallel until 2018.

Table I shows the winners of all editions up to date, along
with the section of this survey in which the method is included
and the paper that describes the approach more in depth.

2) Learning track: The GVGAI Single-Player learning
track has run for two years: 2017 and 2018, both at the IEEE
Conference on Computational Intelligence and Games (CIG).

In the 2017 edition, the execution of controllers was divided
into two phases: learning and validation. In the learning phase,
each controller has a limited amount of time, 5 minutes, for
learning the first 3 levels of each game. The agent could play as
many times as desired, choosing among these 3 levels, as long
as the 5 minutes time limit is respected. In the validation phase,
the controller plays 10 times the levels 4 and 5 sequentially.
The results obtained in these validation levels are the ones used
in the competition to rank the entries. Besides the two sample
random agents written in Java and Python and one sample
agent using Sarsa written in Java, the first GVGAI single-
player learning track received three submissions written in Java
and one in Python [20]. The winner of this track is a naive
implementation of Q-Learning algorithm (Section VI-A4).

The 2018 edition featured, for the first time, the integration
of the framework with the OpenAI Gym API [15], which
results as GVGAI Gym3. This edition also ran with some
relaxed constraints. Firstly, only 3 games are used for the

3https://github.com/rubenrtorrado/GVGAI GYM



TABLE II
SCORE AND RANKING OF THE SUBMITTED AGENTS IN THE 2018’S

GVGAI LEARNING COMPETITION. †DENOTES A SAMPLE CONTROLLER.

Game Game 1 Game 2 Game 3 RankingLevel 3 4 5 3 4 5 3 4 5
fraBot-RL-Sarsa -2 1 -1 0 0 0 2 3 2 1

fraBot-RL-QLearning -2 -1 -2 0 0 0 1 0 2 2
Random†† -0.5 0.2 -0.1 0 0 0 3.5 0.7 2.7 3

DQN† 61.5 -1 0.3 0 0 0 - - - -
Prioritized Dueling DQN† 36.8 -1 -2 0 0 0 - - - -

A2C† 8.1 -1 -2 0 0 0 - - - -
OLETS Planning Agent 41.7 48.6 3.1 0 0 2.2 4.2 8.1 14 -

competition, and they are made public. Only 2 levels for each
are provided to the participants for training purposes, while
the other 3 are kept secret and used for computing the final
results. Secondly, each agent has an increased decision time
of 100ms. Thirdly, the participants were free to train their
agent by themselves using as much time and computational
resources as they want before the submission deadline.

This edition of the competition received only 2 entries,
fraBot-RL-QLearning and fraBot-RL-Sarsa, submitted by the
same group of contributors from the Frankfurt University of
Applied Science. The results of the entries and sample agents
(random, DQN, Prioritized Dueling DQN and A2C [15]) are
summarized in Table II. For comparison, the planning agent
OLETS (with access to the forward model) is included. DQN
and Prioritized Dueling DQN are outstanding on level 3 (test
level) of the game 1, because the level 3 is very similar to
the level 2 (training level). Interestingly, the sample learning
agent DQN outperformed OLETS on the third level of game
1. DQN, Prioritized Dueling DQN and A2C are not applied
to the game 3, due to the different game screen dimensions of
different levels. We would like to refer the readers to [15] for
more about the GVGAI Gym.

B. PCG Tracks

In the PCG tracks, participants develop generators for levels
or rules that are adequate for any game or level (respectively)
given. Due to the inherent subjective nature of content genera-
tion, the evaluation of the entries is done by human judges who
attend the conference where the competition takes place. For
both tracks, during the competition day, judges are encouraged
to try pairs of generated content and select which one they
liked (one, both, or neither). Finally, the winner was selected
based on the generator with more votes.

1) Level Generation Track: The first level generation com-
petition was held at the International Joint Conference on Arti-
ficial Intelligence (IJCAI) in 2016. This competition received 4
participants. Each one of them was provided a month to submit
a new level generator. Three different level generators were
provided in order to help the users get started with the system
(see Section VII for a description of these). Three out of the
four participants were simulation-based level generators while
the remaining was based on cellular automata. The winner of
the contest was the Easablade generator, a cellular automata
described in Section VII-A4. The competition was run again
on the following year at IEEE CIG 2017. Unfortunately, only

one submission was received, hence the the competition was
canceled. This submission used a n-gram model to generate
new constrained levels using a recorded player keystrokes.

2) Rule Generation Track: The Rule Generation track [12]
was introduced and held during CIG 2017. Three different
sample generators were provided (Section VIII) and the con-
test ran over a month’s period. Unfortunately, no submissions
were received for this track.

IV. METHODS FOR SINGLE PLAYER PLANNING

This section describes the different methods that have been
implemented for Single Player Planning in GVGAI. All the
controllers that face this challenge have in common the possi-
bility of using the forward model to sample future states from
the current game state, plus the fact that they have a limited
action-decision time. While most attempts abide by the 40ms
decision time imposed by the competition, other efforts in the
literature compel their agents to obey a maximum number of
calls of the forward model.

Section IV-A briefly introduces the most basic methods
that can be found within the framework. Then Section IV-B
describes the different tree search methods that have been
implemented for this settings by the community, followed by
Evolutionary Methods in Section IV-C. Often, more than one
method is combined into the algorithm, which gives place to
Hybrid methods (Section IV-D) or Hyper-heuristic algorithms
(Section IV-E). Further discussion on these methods and their
common take-aways has been included in Section X.

A. Basic Methods

The GVGAI framework contains several agents aimed at
demonstrating how a controller can be created for the single-
player planning track of the competition [8]. Therefore, these
methods are not particularly strong.

The simplest of all methods is, without much doubt, doNoth-
ing. This agent returns the action nil at every game tick without
exception. The next agent in complexity is sampleRandom,
which returns a random action at each game tick. Finally,
onesteplookahead is another sample controller that rolls the
model forward for each one of the available actions in order
to select the one with the highest action value, determined
by a function that tries to maximize score while minimizing
distances to NPCs and portals.

B. Tree Search Methods

One of the strongest and influential sample controllers is
sampleMCTS, which implements the Monte Carlo Tree Search
(MCTS) algorithm for real-time games. Initially implemented
in a closed loop version (the states visited are stored in the
tree node, without calling forward model during the tree policy
phase of MCTS), it achieved the 3rd position (out of 18
participants) in the first edition of the competition.

The winner of that edition, Couëtoux, implemented Open
Loop Expectimax Tree Search (OLETS), which is an open
loop (states visited are never stored in the associated tree
node) version of MCTS which does not include rollouts and



uses Open Loop Expectimax (OLE) for the tree policy. OLE
substitutes the empirical average reward by rM , a weighted
sum of the empirical average of rewards and the maximum of
its children rM values [8].

Schuster, in his MSc thesis [21], analyzes several enhance-
ments and variations for MCTS in different sets of the GV-
GAI framework. These modifications included different tree
selection, expansion and play-out policies. Results show that
combinations of Move-Average Sampling Technique (MAST)
and n-Gram Selection Technique (NST) with Progressive
History provided an overall higher rate of victories than
their counterparts without these enhancements, although this
result was not consistent across all games (with some simpler
algorithms achieving similar results).

In a different study, Soemers [19], [22] explored multiple
enhancements for MCTS: Progressive History (PH) and NST
for the tree selection and play-out steps, tree re-use (by starting
at each game tick with the subtree grown in the previous frame
that corresponds to the action taken, rather than a new root
node), bread-first tree initialization (direct successors of the
root note are explored before MCTS starts), safety pre-pruning
(prune those nodes with high number of game loses found),
loss avoidance (MCTS ignores game lose states when found
for the first time by choosing a better alternative), novelty-
based pruning (in which states with features rarely seen are
less likely to be pruned), knowledge based evaluation [23]
and deterministic game detection. The authors experimented
with all these enhancements in 60 games of the framework,
showing that most of them improved the performance of
MCTS significantly and their all-in-one combination increased
the average win rate of the sample agent in 17 percentage
points. The best configuration was the winner of one of the
editions of the 2016 competitions (see Table I).

F. Frydenberg studied yet another set of enhancements
for MCTS [24]. The authors showed that using MixMax
backups (weighing average and maximum rewards on each
node) improved the performance in only some games, but
its combination with reversal penalty (to penalize visiting the
same location twice in a play-out) offers better results than
vanilla MCTS. Other enhancements, such as macro-actions (by
repeating an action several times in a sequence) and partial
expansion (a child node is considered expanded only if its
children have also been expanded) did not improve the results
obtained.

Perez-Liebana et al. [23] implemented KB-MCTS, a version
of MCTS with two main enhancements. First, distances to
different sprites were considered features for a linear combi-
nation, where the weights were evolved to bias the MCTS
rollouts. Secondly, a Knowledge Base (KB) is kept about
how interesting for the player the different sprites are, where
interesting is a measure of curiosity (rollouts are biased
towards unknown sprites) and experience (a positive/negative
bias for getting closer/farther to beneficial/harmful entities).
The results of applying this algorithm to the first set of games
of the framework showed that the combination of these two
components gave a boost in performance in most games of
the first training set.

The work in [23] has been extended by other researchers in

the field, which also put a special effort on biasing the Monte
Carlo (MC) simulations. In [25], the authors modified the
random action selection in MCTS rollouts by using potential
fields, which bias the rollouts by making the agent move in
a direction akin to the field. The authors showed that KB-
MCTS provides a better performance if this potential field
is used instead of the Euclidean distance between sprites
implemented in [23]. Additionally, in a similar study [26],
the authors substituted the Euclidean distance for a measure
calculated by a path-finding algorithm. This addition achieved
some improvements over the original KB-MCTS, although the
authors noted in their study that using path-finding does not
provide a competitive advantage in all games.

Another work by Park and Kim [27] tackles this challenge
by i) determining the goodness of the other sprites in the
game; ii) computing an Influence Map (IM) based on this; and
iii) using the IM to bias the simulations, in this occasion by
adding a third term to the Upper Confidence Bound (UCB)
equation [1] for the tree policy of MCTS. Although not
compared with KB-MCTS, the resultant algorithm improves
the performance of the sample controllers in several games of
the framework, albeit performing worse than these in some of
the games used in the study.

Biasing rollouts is also attempted by dos Santos et al. [28],
who introduced Redundant Action Avoidance (RAA) and Non-
Defeat Policy (NDP); RAA analyzes changes in the state to
avoid selecting sequences of actions that do not produce any
alteration on position, orientation, properties or new sprites in
the avatar. NDP makes the recommendation policy ignore all
children of the root node who found at least one game loss in
a simulation from that state. If all children are marked with
a defeat, normal (higher number of visits) recommendation is
followed. Again, both modifications are able to improve the
performance of MCTS in some of the games, but not in all.

de Waard et al. [29] introduced the concept of options of
macro-actions in GVGAI and designed Option MCTS (O-
MCTS). Each option is associated with a goal, a policy and
a termination condition. The selection and expansion steps in
MCTS are modified so the search tree branches only if an
option is finished, allowing for a deeper search in the same
amount of time. Their results show that O-MCTS outperforms
MCTS in games with small levels or a few number of sprites,
but loses in the comparison to MCTS when the games are
bigger due to these options becoming too large.

In a similar line, Perez-Liebana et al. [13] employed macro-
actions for GVGAI games that used continuous (rather than
grid-based) physics. These games have a larger state space,
which in turn delays the effects of the player’s actions and
modifies the way agents navigate through the level. Macro-
actions are defined as a sequence or repetition of the same
action during M steps, which is arguably the simplest kind of
macro-actions that can be devised. MCTS performed better
without macro-actions on average across games, but there
are particular games where MCTS needs macro-actions to
avoid losing at every attempt. The authors also concluded that
the length M of the macro-actions impacts different games
distinctly, although shorter ones seem to provide better results
than larger ones, probably due to a more fine control in the



movement of the agents.
Some studies have brought multi-objective optimization

to this challenge. For instance, Perez-Liebana et al. [30]
implemented a Multi-objective version of MCTS, concretely
maximizing score and level exploration simultaneously. In
the games tested, the rate of victories grew from 32.24%
(normal MCTS) to 42.38% in the multi-objective version,
showing great promise for this approach. In a different study,
Khalifa et al. [31] applied multi-objective concepts to evolving
parameters for a tree selection confidence bounds equation. A
previous work by Bravi [32] (also discussed in Section IV-D)
provided multiple UCB equations for different games. The
work in [31] evolved, using S-Metric Selection Evolutionary
Multi-objective Optimization Algorithm (SMS-EMOA), the
linear weights of a UCB equation that results of combining
all from [32] in a single one. All these components respond
to different and conflicting objectives, and their results show
that it is possible to find good solutions for the games tested.

A significant exception to MCTS with regards to tree search
methods for GVGAI is that of Geffner and Geffner [18] (win-
ner of one of the editions of the 2015 competition, YBCriber,
as indicated in Table I), who implemented Iterated Width (IW;
concretely IW(1)). IW(1) is a breadth-first search with a crucial
alteration: a new state found during search is pruned if it does
not make true a new tuple of at most 1 atom, where atoms
are Boolean variables that refer to position (and orientations
in the case of avatars) changes of certain sprites at specific
locations. The authors found that IW(1) performed better than
MCTS in many games, with the exception of puzzles, where
IW(2) (pruning according to pairs of atoms) showed better
performance. This agent was declared winner in the CEEC
2015 edition of the Single-Player Planning Track [3].

Babadi [33] implemented several versions of Enforced Hill
Climbing (EHC), a breadth-first search method that looks for
a successor of the current state with a better heuristic value.
EHC obtained similar results to KB-MCTS in the first set of
games of the framework, with a few disparities in specific
games of the set.

Nelson [34] ran a study on MCTS in order to investigate if,
giving a higher time budget to the algorithm (i.e. increasing
the number of iterations), MCTS was able to master most
of the games. In other words, if the real-time nature of
the GVGAI framework and competition is the reason why
different approaches fail to achieve a high victory rate. This
study provided up to 30 times more budget to the agent, but
the performance of MCTS only increased marginally even at
that level. In fact, this improvement was achieved by means
of losing less often rather than by winning more games. This
paper concludes that the real-time aspect is not the only factor
in the challenge, but also the diversity in the games. In other
words, increasing the computational budget is not the answer
to the problem GVGAI poses, at least for MCTS.

Finally, another study on the uses of MCTS for single
player planning is carried out by Bravi et al. [35]. In this
work, the focus is set on understanding why and under
which circumstances different MCTS agents make different
decisions, allowing for a more in-depth description and be-
havioral logging. This study proposes the analysis of different

metrics (recommended action and their probabilities, action
values, consumed budget before converging on a decision,
etc.) recorded via a shadow proxy agent, used to compare
algorithms in pairs. The analysis described in the paper shows
that traditional win-rate performance can be enhanced with
these metrics in order to compare two or more approaches.

C. Evolutionary Methods

The second big group of algorithms used for single-player
planning is that of evolutionary algorithms (EA). Concretely,
the use of EAs for this real-time problem is mostly imple-
mented in the form of Rolling Horizon EAs (RHEA). This
family of algorithms evolves sequences of actions with the
use of the forward model. Each sequence is an individual of
an EA which fitness is the value of the state found at the end
of the sequence. Once the time budget is up, the first action of
the sequence with the highest fitness is chosen to be applied
in that time step.

The GVGAI competition includes SampleRHEA as a sample
controller. SampleRHEA has a population size of 10, individual
length of 10 and implements uniform crossover and mutation,
where one action in the sequence is changed for another one
(position and new action chosen uniformly at random) [8].

Gaina et al. [36] analyzed the effects of the RHEA parame-
ters on the performance of the algorithm in 20 games, chosen
among the existent ones in order to have a representative
set of all games in the framework. The parameters analyzed
were population size and individual length, and results showed
that higher values for both parameters provided higher victory
rates. This study motivated the inclusion of Random Search
(SampleRS) as a sample in the framework, which is equivalent
to RHEA but with an infinite population size (i.e. only
one generation is evaluated until budget is consumed) and
achieves better results than RHEA in some games. [36] also
compared RHEA with MCTS, showing better performance for
an individual length of 10 and high population sizes.

Santos et al. [37] implemented three variants for RHEA
with shifted buffer (RHEA-SB) by (i) applying the one-
step-look-ahead algorithm after the buffer shifting phase; (ii)
applying a spatial redundant action avoidance policy [28]; and
(iii) applying both techniques. The experimental tests on 20
GVGAI single-player games showed that the third variant of
RHEA-SB achieved promising results.

Santos and Bernardino [38] applied the avatar-related in-
formation, spacial exploration encouraging and knowledge
obtained during game playing to the game state evaluation
of RHEA. These game state evaluation enhancements have
also been tested on an MCTS agent. The enhancements
significantly increased the win rate and game score obtained
by RHEA and MCTS on 20 tested games.

A different type of information was used by Gaina et al. [39]
to dynamically adjust the length of the individuals in RHEA:
the flatness of the fitness landscape is used to shorten or
lengthen the individuals in order for the algorithm to better
deal with sparse reward environments (using longer rollouts
for identification of further away rewards), while not harming
performance in dense reward games (using shorter rollouts for



focus on immediate rewards). However, this had a detrimental
effect in RHEA, while boosting MCTS results. Simply in-
creasing the rollout length proved to be more effective than
this initial attempt at using the internal agent state to affect
the search itself.

A different Evolutionary Computation agent was proposed
by Jia et al. [40], [41], which consists of a Genetic Pro-
gramming (GP) approach. The authors extract features from a
screen capture of the game, such as avatar location and the
positions and distances to the nearest object of each type.
These features are inputs to a GP system that, using arithmetic
operands as nodes, determines the action to execute as a result
of three trees (horizontal, vertical and action use). The authors
report that all the different variations of the inputs provided to
the GP algorithm give similar results to those of MCTS, on
the three games tested in their study.

D. Hybrids

The previous studies feature techniques in which one tech-
nique is predominant in the agent created, albeit they may
include enhancements which can place them in the boundary
of hybrids. This section describes those approaches that, in the
opinion of the authors, would in their own right be considered
as techniques that mix more than one approach in the same,
single algorithm.

An example of these approaches is presented by Gaina
et al. [42], which analyzed the effects of seeding the initial
population of a RHEA using different methods. Part of the
decision time budget is dedicated to initialize a population with
sequences that are promising, as determined by onesteplooka-
head and MCTS agents. Results show that both seeding options
provide a boost in victory rate when population size and
individual length are small, but the benefits vanish when these
parameters are large.

Other enhancements for RHEA proposed in [43] are incor-
porating a bandit-based mutation, a statistical tree, a shifted
buffer and rollouts at the end of the sequences. The bandit-
based mutation breaks the uniformity of the random mutations
in order to choose new values according to suggestions given
by a uni-variate armed bandit. However, the authors reported
that no improvement on performance was noticed. A statistical
tree, previously introduced in [44], keeps the visit count and
accumulated rewards in the root node, which are subsequently
used for recommending the action to take at that time step.
This enhancement produced better results with smaller indi-
vidual length and smaller population sizes. The shifted buffer
enhancement provided the best improvement in performance,
which consist of shifting the sequences of the individuals of
the population one action to the left, removing the action from
the previous time step. This variation, similar to keeping the
tree between frames in MCTS, combined with the addition of
rollouts at the end of the sequences provided an improvement
in victory rate (20 percentile points over vanilla RHEA) and
scores.

A similar (and previous) study was conducted by Horn et
al. [45]. In particular, this study features RHEA with rollouts
(as in [43]), RHEA with MCTS for alternative actions (where

MCTS can determine any action with the exception of the one
recommended by RHEA), RHEA with rollouts and sequence
planning (same approach as the shifted buffer in [43]), RHEA
with rollouts and occlusion detection (which removes not
needed actions in a sequence that reaches a reward) and
RHEA with rollouts and NPC attitude check (which rewards
sequences in terms of proximity to sprites that provide a
positive or negative reward). Results show that RHEA with
rollouts improved performance in many games, although all
the other variants and additions performed worse than the
sample agents. It is interesting to see that in this case the
shifted buffer did not provide an improvement in the victory
rate, although this may be due to the use of different games.

Schuster [21] proposed two methods that combine MCTS
with evolution. One of them, (1+1)-EA as proposed by [23],
evolves a vector of weights for a set of game features in order
to bias the rollouts towards more interesting parts of the search
space. Each rollout becomes an evaluation for an individual
(weight vector), using the value of the final state as fitness.
The second algorithm is based on strongly-typed GP (STGP)
and uses game features to evolve state evaluation functions
that are embedded within MCTS. These two approaches join
MAST and NST (see Section IV-B) in a larger comparison,
and the study concludes that different algorithms outperform
others in distinct games, without an overall winner in terms
of superior victory rate, although superior to vanilla MCTS in
most cases.

The idea of evolving weight vectors for game features
during the MCTS rollouts introduced in [23] (KB-MCTS4)
was explored further by van Eeden in his MSc thesis [46]. In
particular, the author added A* as a path-finding algorithm to
replace the euclidean distance used in KB-MCTS for a more
accurate measure and changing the evolutionary approach.
While KB-MCTS used a weight for each pair feature-action,
being the action chosen at each step by the Softmax equation,
this work combines all move actions on a single weight and
picks the action using Gibbs sampling. The author concludes
that the improvements achieved by these modifications are
marginal, and likely due to the inclusion of path-finding.

Additional improvements on KB-MCTS are proposed by
Chu et al. [47]. The authors replace the Euclidean distance
feature to sprites with a grid view of the agent’s surroundings,
and also the (1+1)-EA with a Q-Learning approach to bias the
MCTS rollouts, making the algorithm update the weights at
each step in the rollout. The proposed modifications improved
the victory rate in several sets of games of the framework
and also achieved the highest average victory rate among the
algorithms it was compared with.

İlhan and Etaner-Uyar [48] implemented a combination of
MCTS and true online Sarsa (λ). The authors use MCTS roll-
outs as episodes of past experience, executing true online Sarsa
at each iteration with a ε-greedy selection policy. Weights are
learnt for features taken as the smallest euclidean distance
to sprites of each type. Results showed that the proposed

4This approach could also be considered an hybrid. Given its influence in
other tree approaches, it has also been partially described in Section IV-B



approaches improved the performance on vanilla MCTS in
the majority of the 10 games used in the study.

Evolution and MCTS have also been combined in different
ways. In one of them, Bravi et al. [49] used a GP system
to evolve different tree policies for MCTS. Concretely, the
authors evolve a different policy for each one of the 5 games
employed in the study, aiming to exploit the characteristics
of each game in particular. The results showed that the tree
policy plays a very important role on the performance of the
MCTS agent, although in most cases the performance is poor -
none of the evolved heuristics performed better than the default
UCB in MCTS.

Finally, Sironi et al. [50] designed three Self-Adaptive
MCTS (SA-MCTS) that tuned the parameters of MCTS (play-
out depth and exploration factor) on-line, using Naive Monte-
Carlo, an (λ, µ)-Evolutionary Algorithm and the N-Tuple
Bandit Evolutionary Algorithm (NTBEA) [51]. Results show
that all tuning algorithms improve the performance of MCTS
where vanilla MCTS performs poorly, while keeping a similar
rate of victories in those where MCTS performs well. In a
follow-up study, however, Sironi and Winands [52] extend
the experimental study to show that online parameter tuning
impacts performance in only a few GVGP games, with NT-
BEA improving performance significantly in only one of them.
The authors conclude that online tuning is more suitable for
games with longer budget times, as it struggles to improve
performance in most GVGAI real-time games.

E. Hyper-heuristics / Algorithm Selection
Several authors have also proposed agents that use several

algorithms, but rather than combining them into a single one,
there is a higher level decision process that determines which
one of them should be used at each time.

Ross, in his MSc thesis [53] proposes an agent that is a
combination of two methods. This approach uses A* with
Enforced Hill Climbing to navigate through the game at a
high level and switches to MCTS when in close proximity
to the goal. The work highlights the problems of computing
paths in the short time budget allowed, but indicate that goal
targeting with path-finding combined with local maneuvering
using MCTS does provide good performance in some of the
games tested.

Joppen et al. [17] implemented YOLOBOT, arguably the
most successful agent for GVGAI up to date, as it has won
several editions of the competition. Their approach consists
of a combination of two methods: a heuristic Best First
Search (BFS) for deterministic environments and MCTS for
stochastic games. Initially, the algorithm employs BFS until
the game is deemed stochastic, an optimal solution is found
or a certain game tick threshold is reached, extending through
several consecutive frames if needed for the search. Unless the
optimal sequence of actions is found, the agent will execute
an enhanced MCTS consistent of informed priors and rollout
policies, backtracking, early cutoffs and pruning. The resultant
agent has shown consistently a good level of play in multiple
game sets of the framework.

Another hyper-heuristic approach, also winner of one of
the 2015 editions of the competition (Return42, see Table I),

determines first if the game is deterministic or stochastic. In
case of the former, A* is used to direct the agent to sprites of
interest. Otherwise, random walks are employed to navigate
through the level [16].

Azaria et al. [54] applied GP to evolve hyper-heuristic-based
agents. The authors evolved 3 step-lookahead agents, which
were tested on the 3 game sets from the first 2014 GVGAI
competition. The resultant agent was able to outperform the
agent ranked at 3rd place in the competition (sample MCTS).

The fact that this type of portfolio agents has shown very
promising results has triggered more research into hyper-
heuristics and game classification. The work by Bontrager
et al. [55] used K-means to cluster games and algorithms
attending to game features derived from the type of sprites
declared in the VGDL files. The resulting classification seemed
to follow a difficulty pattern, with 4 clusters that grouped
games that were won by the agents at different rates.

Mendes et al. [56] built a hyper-agent which selected
automatically an agent from a portfolio of agents for playing
individual game and tested it on the GVGAI framework. This
approached employed game-based features to train different
classifiers (Support Vector Machines - SVM, Multi-layer Per-
ceptrons, Decision Trees - J48, among others) in order to select
which agent should be used for playing each game. Results
show that the SVM and J48 hyper-heuristics obtained a higher
victory rate than the single agents separately.

Horn et al. [45] (described before in Section IV-D) also
includes an analysis on game features and difficulty estimation.
The authors suggest that the multiple enhancements that are
constantly attempted in many algorithms could potentially be
switched on and off depending on the game that is being
played, with the objective of dynamically adapting to the
present circumstances.

Ashlock et al. [16] suggest the possibility of creating a
classification of games, based on the performance of multiple
agents (and their variations: different enhancements, heuristics,
objectives) on them. Furthermore, this classification needs
to be stable, in order to accommodate the ever-increasing
collection of games within the GVGAI framework, but also
flexible enough to allow an hyper-heuristic algorithm to choose
the version that better adapts to unseen games.

Finally, Gaina et al. [57] gave a first step towards algorithm
selection from a different angle. The authors trained several
classifiers on agent log data across 80 games of the GVGAI
framework, in particular obtained only from player experience
(i.e. features extracted from the way search was conducted,
rather than potentially human-biased game features), to deter-
mine if the game will be won or not at the end. Three models
are trained, for the early, mid and late game, respectively, and
tested in previously not seen games. Results show that these
predictors are able to foresee, with high reliability, if the agent
is going to lose or win the game. These models would there-
fore allow to indicate when and if the algorithm used to play
the game should be changed. A visualization of these agent
features, including win prediction, displayed live while playing
games, is available through the VertigØ tool [58], which means
to offer better agent analysis for deeper understanding of the
agents’ decision making process, debugging and game testing.



V. METHODS FOR TWO-PLAYER PLANNING

This section approaches agents developed by researchers
within the Two-Player Planning setting. Most of these entries
have been submitted to the Two-Player Planning track of the
competition [9]. Two methods stood out as the base of most
entries received so far, Monte Carlo Tree Search (MCTS) and
Evolutionary Algorithms (EA) [10]. On the one hand, MCTS
performed better in cooperative games, as well as showing the
ability to adapt better to asymmetric games, which involved a
role switch between matches in the same environment. EAs,
on the other hand, excelled in games with long lookaheads,
such as puzzle games, which rely on a specific sequence of
moves being identified.

Counterparts of the basic methods described in Section IV-A
are available in the framework as well, the only difference
being in the One Step Lookahead agent which requires an
action to be supplied for the opponent when simulating game
states. The opponent model used by the sample agent assumes
they will perform a random move (with the exception of those
actions that would cause a loss of the game).

A. Tree Search methods

Most of the competition entries in the first 3 seasons
(2016-2018) were based on MCTS (see Section IV-B). It is
interesting to note that the 2016 winner won again in 2018
- highlighting the difficulty of the challenge and showing the
need for more research focus on multi-player games for better
and faster progress.

Some entries employed an Open Loop version of MCTS,
which would only store statistics in the nodes of the trees
and not game states, therefore needing to simulate through
the actions at each iteration for a potentially more accurate
evaluation of the possible game states. Due to this being
unnecessarily costly in deterministic games, some entries such
as MaasCTS2 and YOLOBOT switched to Breadth-First Search
in such games after an initial analysis of the game type, a
method which has shown ability to finding the optimal solution
if the game lasts long enough.

Enhancements brought to MCTS include generating value
maps, either regarding physical positions in the level, or
higher-level concepts (such as higher values being assigned to
states where the agent is closer to objects it hasn’t interacted
with before; or interesting targets as determined by controller-
specific heuristics). The winner of the 2016 WCCI and 2017
CEC legs, ToVo2, also employed dynamic Monte Carlo roll-out
length adjustments (increased with the number of iterations to
encourage further lookahead if budget allows) and weighted
roll-outs (the weights per action generated randomly at the
beginning of each roll-out).

All agents use online learning in one way or another
(the simplest form being the base Monte Carlo Tree Search
backups, used to gather statistics about each action through
multiple simulations), but only the overall 2016 and 2018
Championship winner, adrienctx, uses offline learning on the
training set supplied to tune the parameters in the Stochastic
Gradient Descent function employed, learning rate and mini
batch size.

B. Evolutionary methods

Two of the 2016 competition entries used an EA tech-
nique as a base as an alternative to MCTS: Number27 and
CatLinux [10].

Number27 was the winner of the CIG 2016 leg, the con-
troller placing 4th overall in the 2016 Championship. Num-
ber27 uses a Genetic Algorithm (GA), with one population
containing individuals which represent fixed-length action
sequences. The main improvement it features on top of the
base method is the generation of a value heat-map, used to
encourage the agent’s exploration towards interesting parts of
the level. The heat-map is initialized based on the inverse
frequency of each object type (therefore a lower value the
higher the object number) and including a range of influence
on nearby tiles. The event history is used to evaluate game
objects during simulations and to update the value map.

CatLinux was not a top controller on either of the individual
legs run in 2016, but placed 5th overall in the Championship.
This agent uses a Rolling Horizon Evolutionary Algorithm
(RHEA). A shift buffer enhancement is used to boost per-
formance, specifically keeping the population evolved during
one game tick in the next, instead of discarding it, each action
sequence is shifted one action to the left (therefore removing
the previous game step) and a new random action is added at
the end to complete the individual to its fixed length.

No offline learning was used by any of the EA agents,
although there could be scope for improvement through pa-
rameter tuning (offline or online).

C. Opponent model

Most agents submitted to the Two-Player competition use
completely random opponent models. Some entries have
adopted the method integrated within the sample One Step
Lookahead controller, choosing a random but non-losing ac-
tion. In the 2016 competition, webpigeon assumed the oppo-
nent would always cooperate, therefore play a move beneficial
to the agent. MaasCTS2 used the only advanced model at
the time: it remembered Q-values for the opponent actions
during simulations and added them to the statistics stored
in the MCTS tree nodes; an ε-greedy policy was used to
select opponent actions based on the Q-values recorded. This
provided a boost in performance on the games in the WCCI
2016 leg, but it did not improve the controller’s position in
the rankings for the following CIG 2016 leg. Most entries in
the 2017 and 2018 seasons employed simple random opponent
models.

Opponent models were found to be an area to explore
further in [10] and Gonzalez and Perez-Liebana looked at 9
different models integrated within the sample MCTS agent
provided with the framework [59]. Alphabeta builds a tree
incrementally, returning the best possible action in each time
tick, while Minimum returns the worst possible action. Average
uses a similar tree structure, but it computes the average
reward over all the actions and it returns the action closest
to the average. Fallible returns the best possible action with
a probability p = 0.8 and the action with the minimum
reward otherwise. Probabilistic involved offline learning over



20 games in the GVGAI framework in order to determine
the probability of an MCTS agent to select each action,
and then using these to determine the opponent action while
playing online. Same Action returns the same action the agent
plays, while Mirror returns its opposite. Finally, LimitedBuffer
records the last n = 20 actions performed by the player
and builds probabilities of selecting the next action based on
this data, while UnlimitedBuffer records the entire history of
actions during the game. When all 9 opponent models were
tested in a round robin tournament against each other, the
probabilistic models achieve the highest win rates and two
models, Probabilistic and UnlimitedBuffer outperforming a
random opponent model.

Finally, the work done on two-player GVGAI has in-
spired other research on Mathematical General Game Playing.
Ashlock et al. [60] implemented general agents for three
different mathematical coordination games, including the Pris-
oner’s Dilemma. Games were presented at once, but switching
between them at certain points, and experiments show that
agents can learn to play these games and recognize when the
game has changed.

VI. METHODS FOR SINGLE-PLAYER LEARNING

The GVGAI framework has also been used from an agent
learning perspective. In this setting, the agents do not use the
forward model to plan ahead actions to execute in the real
game. Instead, the algorithms learn the games by repeatedly
playing them multiple times (as episodes in Reinforcement
Learning), ideally improving their performance progressively.
This section describes first the approaches that tackled the
challenge set in the single-player learning track of the 2017
and 2018 competitions, to then move to other approaches.

A. Competition entries

1) Random agent: A sample random agent, which selects
an action uniformly at random at every game tick, is included
in the framework (in both Java and Python) for the purposes
of testing. This agent is also meant to be taken as a baseline:
a learner is expected to perform better than an agent which
acts randomly and does not undertake any learning.

2) Multi-armed bandit algorithm: DontUnderestima-
teUchiha by K. Kunanusont is based on two popular
Multi-Armed Bandit (MAB) algorithms, ε-Decreasing Greedy
Algorithm and Upper Confidence Bounds (UCB). At any
game tick T , the current best action with probability 1− εT is
picked, otherwise an action is uniformly randomly selected.
The best action at time T is determined using UCB with
increment of score as reward. This is a very interesting
combination, as the UCB-style selection and the ε-Decreasing
Greedy Algorithm both aim at balancing the trade-off between
exploiting more the best-so-far action and exploring others.
Additionally, ε0 is set to 0.5 and it decreases slowly along
time, formalized as εT = ε0 − 0.0001T . According to the
competition setting, all games will last longer than 2, 000
game ticks, so ∀T ∈ {1, . . . , 2000}, 0.5 ≥ εT ≥ 0.3. As a
result, random decisions are made for approximately 40%
time.

3) Sarsa: sampleLearner, ercumentilhan and fraBot-RL-
Sarsa are based on the State-Action-Reward-State-Action
(Sarsa) algorithm [2]. The sampleLearner and ercumentilhan
use a subset of the whole game state information to build a
new state to reduce the amount of information to be saved and
to take into account similar situations. The main difference is
that the former uses a square region with fixed size centered at
the avatar’s position, while the latter uses a first-person view
with a fixed distance. fraBot-RL-Sarsa uses Sarsa, and it uses
the entire screenshot of the game screen as input provided by
GVGAI Gym. The agent has been trained using 1000 episodes
for each level of each game, and the total training time was
48 hours.

4) Q-learning: kkunan, by K. Kunanusont, is a simple Q-
learning [2] agent using most of the avatar’s current infor-
mation as features, which a few exceptions (such as avatar’s
health and screen size, as these elements that vary greatly
from game to game). The reward at game tick t+1 is defined
as the difference between the score at t + 1 and the one at
t. The learning rate α and discounted factor γ are manually
set to 0.05 and 0.8. During the learning phase, a random
action is performed with probability ε = 0.1, otherwise, the
best action is selected. During the validation phase, the best
action is always selected. Despite it’s simplicity, it won the the
first track in 2017. fraBot-RL-QLearning uses the Q-Learning
algorithm. It has been trained using 1000 episodes for each
level of each game, and the total training time was 48 hours.

5) Tree search methods: YOLOBOT is an adaption of
the YOLOBOT planning agent (as described previously in
Section IV-E). As the forward model is no more accessible
in the learning track, the MCTS is substituted by a greedy
algorithm to pick the action that minimizes the distance to
the chosen object at most. According to the authors, the poor
performance of YOLOBOT in the learning track, contrary to
its success in the planning tracks, was due to the collision
model created by themselves that did not work well.

B. Other learning agents

One of the first works that used this framework as a learning
environment was carried out by Samothrakis et al. [61], who
employed Neuro-Evolution in 10 games of the benchmark.
Concretely, the authors experimented with Separable Natural
Evolution Strategies (S-NES) using two different policies (ε-
greedy versus softmax) and a linear function approximator
versus a neural network as a state evaluation function. Features
like score, game status, avatar and other sprites information
were used to evolve learners during 1000 episodes. Results
show that ε-greedy with a linear function approximator was
the better combination to learn how to maximize scores on
each game.

Braylan and Miikkulainen [62] performed a study in which
the objective was to learn a forward model on 30 games. The
objective was to learn the next state from the current one
plus an action, where the state is defined as a collection of
attribute values of the sprites (spawns, directions, movements,
etc.), by means of logistic regression. Additionally, the authors
transfer the learnt object models from game to game, under



the assumption that many mechanics and behaviours are
transferable between them. Experiments showed the effective
value of object model transfer in the accuracy of learning
forward models, resulting in these agents being stronger at
exploration.

Also in a learning setting, Kunanusont et al. [63], [64]
developed agents that were able to play several games via
screen capture. In particular, the authors employed a Deep
Q-Network in 7 games of the framework of increasing com-
plexity, and included several enhancements to GVGAI to
deal with different screen sizes and a non-visualization game
mode. Results showed that the approach allowed the agent to
learn how to play in both deterministic and stochastic games,
achieving a higher winning rate and game score as the number
of episodes increased.

Apeldoorn and Kern-Isberner [65] proposed a learning agent
which rapidly determines and exploits heuristics in an un-
known environment by using a hybrid symbolic/sub-symbolic
agent model. The proposed agent-based model learned the
weighted state-action pairs using a sub-symbolic learning ap-
proach. The proposed agent has been tested on a single-player
stochastic game, Camel Race, from the GVGAI framework,
and won more than half of the games in different levels
within the first 100 game ticks, while the standard Q-Learning
agent never won given the same game length. Based on
[65], Dockhorn and Apeldoorn [66] used exception-tolerant
Hierarchical Knowledge Bases (HKBs) to learn the approx-
imated forward model and tested the approach on the 2017
GVGAI Learning track framework, respecting the competition
rules. The proposed agent beats the best entry in the learning
competition organized at CIG-17 [66], but still performed far
worse than the best planning agents, which have access to the
real forward models.

Using the new GVGAI Gym, Torrado et al. [15] compared 3
implemented Deep Reinforcement Learning algorithms of the
OpenAI Gym, Deep Q-Network (DQN), Prioritized Dueling
DQN and Advance Actor-Critic (A2C), on 8 GVGAI games
with various difficulties and game rules. All the three RL
agents perform well on most of the games, however, DQNs
and A2C perform badly when no game score is given during
a game playing (only win or loss is given when a game
terminates). These three agents have been used as sample
agents in the learning competition organized at CIG-18.

Finally, Justesen et al. [67] implemented A2C within the
GVGAI-Gym interface in a training environment that allows
learning by procedurally generating new levels. By varying
the levels in which the agent plays, the resulting learning is
more general and does not overfit to specific levels. The level
generator creates levels at each episode, producing them in a
slowly increasing level of difficulty in response to the observed
agent performance.

C. Discussion

The presented agents differ between each other in the input
game state (Json string or screen capture), the amount of
learning time, the algorithm used. Additionally, some of the
agents have been tested on a different set of games and

sometimes using different game length (i.e., maximal number
of game ticks allowed). None of the agents, which were
submitted to the 2017 learning competition, using the classic
GVGAI framework, have used screen capture.

The Sarsa-based agents performed surprisingly bad in the
competition, probably due to the arbitrarily chosen parameters
and very short learning time. Also, learning 3 levels and testing
on 3 more difficult levels given only 5 minutes learning time
is a difficult task. An agent should take care of the learning
budget distribution and decide when to stop learning a level
and to proceed the next one.

The learning agent using exception-tolerant HKBs [66]
learns fast. However, when longer learning time is allowed, it
is dominated by Deep Reinforcement Learning (DRL) agents.
Out of the 8 games tested by Torrado et al. [15], none of the
tested 3 DRL algorithms outperformed the planning agents on
6 games. However, on the heavily stochastic game Seaquest,
A2C achieved almost double score than the best planning
agent, MCTS.

VII. METHODS FOR LEVEL GENERATION

Different researchers used different approaches to generate
levels for the GVGAI framework. The following subsection
describes all known generators either included in the frame-
work or developed during the competition.

A. Constructive methods
Constructive generators are designed to generate levels

based on general knowledge. For example: enemies should
be away from the avatar, walls shouldn’t divide the world into
islands, etc. Based on the game the generator adjusts a couple
of parameters and rules to fit the game as, for example, the
number of non-playable characters (NPCs) in the generated
level. Constructive generators don’t need any simulations after
generating the level. The following are the known constructive
generators.

1) Sample random generator: This is the most naive
method to generate a level. The generator first identifies
solid sprites. Solid sprites block the avatar and all NPCs
from moving and don’t react to anything. The generator adds
a selected solid sprite as a border for the generated level
to prevent sprites from wandering outside the game screen.
Followed by adding one of each character in the level mapping
section to a random location in the level. This step ensures the
game is playable. Finally, it adds a random amount of random
sprites from the level mapping to random locations in the level.

2) Sample constructive generator: This generator uses
some general game knowledge to generate the level. First, the
generator calculates the level dimensions and the number of
sprites in the level, then labels game sprites based on their
interactions and sprite types. After that, it constructs a level
layout using the solid sprites, to later add the avatar to a
random empty location. After knowing the avatar position, the
generator adds harmful sprites (those that can kill the avatar)
in a far location from the avatar and adds other sprites at any
random free locations. Finally, the generator makes sure that
the number of goal sprites is sufficient to prevent winning or
losing automatically when the game starts.



3) Easablade constructive generator: This is the winner
generator for the first level generator competition. The gener-
ator is similar to the sample constructive generator but it uses
cellular automata to generate the level instead of layering the
objects randomly. The cellular automata is run on multiple
layers. The first layer is to design the map obstacles, followed
by the exit and the avatar, then the goal sprites, harmful sprites,
and others.

4) N-Gram constructive generator: This generator uses a
n-gram model to generate the level. The generator records
the player actions from a previous play-through. This action
sequence is used to generate the levels using predefined rules
and constraints. For example, if the player uses the USE action
quite often, the generator will include more enemies in the
level. The n-gram is used to specify the rules. Instead of re-
acting to each separate action, the model reacts to a n-sequence
of actions. During the generation process, the algorithm keeps
track of the number and position of every generated object to
ensure the generated sprites do not overpopulate the level. A
single avatar sprite is placed in the lower half of the level.

5) Beaupre’s constructive pattern generator: In this work,
Beaupre et al. [68] automatically analyzed 97 different games
from the GVG-AI framework using a 3x3 sliding window over
all the provided GVG-AI levels. They constructed a dictionary
of all the different patterns (they discovered 12, 941 unique
patterns) with labels about the type of objects in them. The
constructive generator starts by checking if the game contain
solid sprites (sprites that doesn’t allow player to pass through
them). If that was the case, the generator fills the edges using
border patterns (patterns that contain solid sprites and exists
on the edge of the maps). The rest of the game area is filled
by random selecting of patterns that maintain the following
two heuristics: 1) only one avatar sprite should be found in
the level; and 2) all non solid game areas area connected.

B. Search-based methods

Search-based generators use simulations to make sure the
generated level is playable and better than just placing random
objects. The following are the known search-based generators.

1) Sample genetic generator: This is a search-based level
generator based on the Feasible Infeasible 2 Population Ge-
netic Algorithm (FI2Pop). FI2Pop is a GA which uses 2
populations, one for feasible chromosomes and the other
for infeasible chromosomes. The feasible population tries
to increase the difference between the OLETS agent (see
Section IV-B) and one-step look ahead, while the infeasible
population tries to decrease the number of chromosomes that
violate the problem constraints (i.e. at least one avatar in the
game, the avatar must not die in the first 40 steps, etc.). Each
population evolves on its own, where the children can transfer
between the two populations. This generator initializes the
population using sample constructive generator.

2) Amy12 genetic generator: This generator is built on top
of the sample genetic generator. The main idea is to generate a
level that fits a certain suspense curve. Suspense is calculated
at each point in time, by calculating the number of actions that
leads to death or tie using the OLETS agent. The algorithm

modifies the levels to make sure the suspense curve is not
constant during the life time of the game. Good generators
are aimed at producing 3 suspense peeks with values of 50%
(where half of the actions, on average lead to losing the game).
One of the advantages of using this technique that it makes
sure that the generated level is winnable. Games that are hard
to win will have a higher peak in the suspense curve, which
is not valued highly by the generator.

3) Jnicho genetic generator: This generator [69] uses a
standard GA with similar crossover and mutation operators
to the sample GA. The fitness function used is a combination
between the score difference and the constraints specified in
the sample genetic generator. The score difference is calculated
between an Monte Carlo Tree Search agent and One Step Look
Ahead agent. The score difference is normalized between 0
and 1 to make sure it won’t overshadow the constraint values.

4) Number13 genetic generator: This is a modified version
of the sample genetic generator. These modifications includes
using adaptive crossover mechanism, adaptive mutation rate,
a better agent than OLETS, and allowing crossover between
feasible and infeasible population, which is not allowed in the
sample genetic generator.

5) Sharif’s pattern generator: This generator is still work
in progress. Sharif et al. [70] identified 23 different patterns by
analyzing the grouping of different game sprites from several
GVG-AI games. They are working now on using these design
patterns as a fitness function for a search based generator.

6) Beaupre’s evolutionary pattern generator: Similar to
Beaupre’s constructive pattern generator in section VII-A5,
they used the constructed dictionary for designing a search
based generator. They modified the sample genetic generator
provided with the framework to work using patterns instead of
using game sprites. They also initialized the generator using
the constructive version to speed up the generation process.

C. Constraint-based methods

1) ASP generator: This generator [71] uses Answer Set
Programming (ASP) to generate levels. The main idea is to
generate ASP rules that generate suitable levels for the current
game. The generated rules consists of three different types. The
first type are basic rules, which are based on specific decisions
to keep the levels simple (for instance, levels can only have one
sprite per tile). The second type are game specific rules, which
are extracted from the game description file. An example is
the identification of singleton sprites that should only have
one sprite in the level. The last type are additional rules to
minimize the search space. These rules limit the minimum and
maximum number of each sprite type. All the rules are evolved
using evolutionary strategy with the algorithm performance
difference between sampleMCTS and a random agent as the
fitness function.

D. Discussion

The presented generators differ in the amount of time
needed to generate a level and the features of the generated
content. The constructive generators take the least amount of
time to generate a single level without a guarantee that the



generated level is beatable. On the other hand, both search-
based and constraint-based generators take longer time but
generate challenging beatable levels as they use automated
playing agents as a fitness function. The constraint-based
generator only takes long time to find an ASP generator which
could be used to generate many different levels as fast as the
constructive generators, while search-based generators take a
long time to find a group of similar looking levels.

For the generators that participated in the GVG-AI level
generation competition (Easablade, Amy12, Jnicho, and Num-
ber13), they have been evaluated during IJCAI 2016 by asking
the conference delegates to play two randomly selected levels
and choose a preferred one. Each generator was used to
generate 3 levels for 4 different games (The Snowman, Free-
way, Run, and Butterflies). Easablade was chosen most often
(78.4%), followed by Number13, amyP2 and jnicho (40.3%,
39.13% and 34.54%, respectively). The winner, Easablade,
generated fewer objects than the opponents and nice looking
layouts produced by the cellular automata, which is likely
is the main reason behind its victory. Most of the generated
levels by Easablade, however, were either unbeatable or easy
compared to the other generators.

VIII. METHODS FOR RULE GENERATION

This section describes the different algorithms that are
included in the framework or have been found in the litera-
ture [72] toward generating rules for the GVG-AI framework.

A. Constructive methods

Constructive methods are algorithms that generate the rules
in one pass without the need to play the game. The constructive
methods often incorporate knowledge about game design to
generate more interesting games.

1) Sample random generator: This is the simplest generator
provided with the framework. The main idea is to gener-
ate a game that compiles with no errors. For example, the
game shouldn’t contain interactions such as killing the end
of screen (EOS) sprite. The algorithm starts by generating
a random number of interactions by selecting two random
sprites (including EOS) and a random interaction rule one
by one. The algorithm checks that every interaction is valid
before adding it to the generated game. After generating the
random interactions, the algorithm generates two termination
conditions, one for winning and one for losing. The losing
condition is fixed to the avatar being killed, while the winning
is either winning the game after a random amount of frames
or winning the game when certain sprite count reaches zero.

2) Sample constructive generator: This is a more complex
generator that utilizes knowledge about VGDL language and
level design to generate more interesting games. The algorithm
starts by classifying the game sprites into different categories,
such as wall sprites (those that surround the level), col-
lectible/harmful sprites (immovable sprites that cover around
10% of the level), spawner sprites (sprites that spawn another),
etc. For each type of sprite, the algorithm has rules to generate
interactions based on them. For example, harmful sprites kill
the avatar on collision, wall sprites either prevent any movable

object from passing through or kill the movable object upon
collision, etc. For more details about the rules, the reader is
referred to [12]). After the game interactions are generated,
two termination conditions are generated, one for winning and
one for losing. The losing condition is fixed to the avatar’s
death, while the winning condition depends on the current
sprites. For example: if collectible sprites exist in the current
definition, the winning condition is set to collect them all.

B. Search-based methods

Search-based methods use a search based algorithm to find a
game based on certain criteria that ensure the generated game
have better rules than just randomly choosing them.

1) Sample genetic generator: Similar to the level genera-
tion track, the search based algorithm uses FI2Pop to evolve
new games. As discussed before, FI2Pop keeps two popula-
tions one for feasible games and the other for infeasible games.
The infeasible games tries to become feasible by satisfying
multiple constraints such as minimizing the number of bad
frames (frames contains sprites outside the level boundaries)
under certain threshold, the avatar doesn’t die in the first 40-
frames, etc. On the other hand, the feasible chromosomes try
to maximize its fitness. The fitness consists of two parts, the
first part is to maximize the difference in performance between
the OLETS and MCTS agents, and the difference between
MCTS and random agent. The second part is to maximize the
number of interaction rules that fires during the simulation of
the generated game.

2) Thorbjørn generator: This generator [72] is similar
to the sample genetic generator. It tries to maximize the
difference between the performance of different algorithms.
This generator uses evolutionary strategies with mutation and
crossover operators to generate an entire game instead of an
interaction set and termination conditions.

C. Discussion

Similar to the level generators, the difference between the
different generators is the time used in creation and the
features in the output game. The constructive methods take less
time but do not guarantee different games or playability, while
the search-based generators take long time to generate one
game, attempting to satisfy the playability constraints using
automated playing agents. Thorbjorn is the only generator that
creates the whole game, not only the interaction rules and
termination conditions, which makes it harder to compare to
the rest of the generators.

The remaining ones are the 3 sample generators that come
with the framework, which are compared to each other by
doing a user study on the generated games [12]. The generators
are used to generate 3 new games for 3 different levels
(Aliens, Boulderdash, and Solarfox). The participants in the
study were subjected to two generated games by two randomly
selected generators and asked to pick the one they prefer. The
constructive generator was the preferred one (chosen 76.38%
of the time), followed by the genetic (44.73%) and random
(24.07%) generators. An explanation for the low preference
shown for the genetic generator could be its fitness function:



it incorporates a constraint that tries to make sure that the
game sprites are always in the playing area. This constraint
caused the GA in the current allocated time to favor games
that limit considerably the movement of the sprites.

IX. RESEARCH THAT BUILDS ON GVGAI

A. Learn the domain knowledge

Beside the work relevant to the learning competition, there
are some other research work around Reinforcement Learning
using the GVGAI framework. Narasimhan et al. [73] combined
a differentiable planning module and a model-free component
to a two-part representation, obtained by mapping the collected
annotations for game playings to the transitions and rewards, to
speed up the learning. The proposed approach has been tested
on 4 GVGAI single-player games and shown its effectiveness
on both transfer and multi-task scenarios on the tested games.
The GVGAI Learning Competition proposes to use a screen-
shot of the game screen (at pixel level) at every game tick to
represent the current game state. Instead of directly using the
screen-shot, Woof and Chen [74] used an Object Embedding
Network (OEN), which extracted the objects in the game state
and compressed object feature vectors (e.g., position, distance
to the nearest sprite, etc.) into one single fixed-length feature
vector. The DRL agent based on OEN has been evaluated
on 5 of the GVGAI single-player games and showed various
performance levels on the tested games [74].

B. AI-assisted game design

Machado et al. [75] implemented a recommender system
based on the VGDL to recommend game elements, such as
sprites and mechanics. Then, the recommender system was
expanded to Cicero [76], [77], an AI-assisted game design
and debugging tool built on top of the GVGAI. Cicero has a
statistics tool of the interactions to help figuring out the unused
game rules; a visualization system to illustrate the information
about game objects and events, a mechanics recommender, a
query system [78] for in-game data, a playtrace aggregator,
a heatmap-based game analysis system and a retrospective
analysis application SeekWhence [79]. The gameplay sessions
by human players or AI agents can be recorded and every
single frame at every game tick can be easily extracted for
further study and analysis.

Recently, Liu et al. [80] applied a simple Random Mutation
Hill Climber (RMHC) and a Multi-Armed Bandit RMHC
together with resampling methods to tune game parameters
automatically. Games instances with significant skill-depth
have been evolved using GVGAI agents. Furthermore, Ku-
nanusont et al. [51] evolved simultaneously the GVGAI agents
as part of the game (opponent models).

Guerrero et al. [81] explored five GVGAI agents using
four different heuristics separately on playing twenty GVGAI
games, allowing different behaviors according to the diverse
scenarios presented in the games. In particular, this work
explored heuristics that were not focused on winning the game,
but to explore the level or interact with the different sprites
of the games. These agents can be used to evaluate generated

games, thus help evolve them with preferences to particular
behaviors.

Khalifa et al. [82] modified MCTS agents by editing the
UCT formula used in the agent. Human playing data has
been used for modeling to make the modified agents playing
in a human-like way. Primary results showed that one of
the studied agents achieved a similar distribution of repeated
actions to the one by human players. The work was then
extended by Bravi et al. [49], in which game-play data have
been used to evolve effective UCT alternatives for a specific
game. The MCTS agents using new formulas, with none
or limited domain information, are compared to a standard
implementation of MCTS (the sampleMCTS agent of GVGAI)
on the game Missile Command. Applying the UCT alternatives
evolved using game-playing data to a standard MCTS signif-
icantly improved its performance.

Besides designing games and the agents used in them,
the automatic generation of video game tutorials (aimed at
helping players understanding how to play a game) is also
an interesting sub-field of study. Green et al. [83] pointed
out that the GVGAI Framework provides an easy testbed for
tutorial generation. The game rules in GVGAI are defined
in VGDL, therefore the tutorial generation can be easily
achieved by reading and translating VGDL files. Further Green
et al. [84] build a system (AtDelfi) that generates tutorials
using the VGDL file and automated AI agents. AtDelfi reads
the VGDL file and build a graph of interactions between
the game sprites. AtDelfi analyzes the graph to identify the
winning path (sequence of nodes starting from player sprite
that leads to the winning condition in the graph), losing paths
(sequence of nodes starting from the losing condition till there
is no dependency), and score path (sequence of nodes starting
from player sprite that leads to score change in the graph).
These paths are represented as text and videos that explain to
the user how to play the game. The text is generated using
a string replacement method to generate a human readable
instructions, while the videos are recorded using a group of
automated agents that won the General Video Game Playing
Competition [8] and record every group of frames that cause
one of the interactions on the path to trigger.

A more recent work by Anderson et al. [85] focused on
designing deceptive games to deceive AI agents and lead
the agents away from a globally optimal policy. Designing
such games helps understand the capabilities and weaknesses
of existing AI agents and can serve at a preparation step
for designing a meta-agent for GVGP which combines the
advantages of different agents. The authors categorized the de-
ceptions and imported various types of deception to the exist-
ing GVGAI games by editing the corresponding VGDL files.
The agents submitted to the GVGAI single-player planing
competition have been tested on the new games. Interestingly,
the final ranking of the agents on each of the games differed
significantly from the rankings in the GVGAI competition.
The new designed deceptive games successfully explored the
weaknesses of agents which have performed well on the test
set of the official competition.

Finally, C. Guerrero-Romero et al., in a vision paper [86],
proposed a methodology that consists of the use of a team



of general AI agents with differentiated skill levels and goals
(winning, exploring, eliminating sprites, collecting items, etc.).
The methodology is aimed at aiding game design by analyzing
the performance of this team of agents as a whole and the
provision of logged and visual information that shows the
agent experience through the game.

C. Game generation with RAPP

Nielsen et al. [87] proposed Relative Algorithm Perfor-
mance Profile (RAPP) as a measure of relative performance
of agents and tested their approach on different general game-
playing AI agents using GVGAI framework. The authors
showed that well-designed games have clear skill-depth, thus
being able to distinct good or bad players. In other words,
a strong agent or human player should perform significantly
better than a weak agent or human player over multiple
playings on well-designed games. For instance, a skillful agent
is expected to perform better than a random agent, or one that
does not move.

Then, Nielsen et al. [72] integrated the differences of
average game scores and win rate between any agent and a
random agent to the evaluation of new games either randomly
generated or generated by editing existing GVGAI games.
Though most of the resulted games are interesting to play,
there are some exceptions, in which the core challenge of the
game has been removed. For instance, the enemy can not heart
the player, which makes it no more an enemy. But it still
provides useful starting points for human designers.

Kunanusont et al. [51] extended the idea of RAPP. Five
GVGAI agents and a deterministic agent designed for the
tested Space Battle Game are used as the candidate opponent,
which is considered as part of the game to be evolved.
Two GVGAI agents, One Step Look Ahead (weak), MCTS
(strong) and the deterministic agent (mediocre), are used to
play multiple times the evolved game for evaluation. The
evaluation function is defined as the minimum of the difference
of game scores between the strong and mediocre agents, and
the difference of game scores between the mediocre and weak
agents, aiming at generating games that can clearly distinguish
stronger agents and weak agents.

Recently, Kunanusont et al. [88] used the NTBEA to evolve
game parameters in order to model player experience within
the game. The authors were able to find parameterizations of
three games that, when played by MCTS and RHEA agents,
produce predefined and different score trends.

D. Robustness testing

Perez-Liebana et al. [89] ran a study on the winners of
the 2014 and 2015 editions of the single player planning
competition in order to analyze how robust they were to
changes in the environment with regards to actions and re-
wards. The aim of this work was to analyze a different type
of generality: controllers for this framework are developed
to play in multiple games under certain conditions, but the
authors investigated which could be the effect of breaking
those compromises: an inaccurate Forward Model, an agent

that does not execute the move decided by the algorithm or
score penalties incurred by performing certain actions.

An interesting conclusion on this study is that, once the
conditions have been altered, sample agents climb up to the
top of the rankings and the good controllers behave worse.
Agents that rely on best first search or A* (such as YOLOBOT
or Return42, already described in this paper) handled noise
very badly. MCTS also showed to be quite robust in this
regard, above other Rolling Horizon agents that could not
cope so well with these changes. This work also reinforced
the idea that the GVGAI framework and competition are also
robust. Despite the changes in the performance of the agents,
some controllers do better than others under practically all
conditions. The opposite (rankings depending only on noise
factors, for instance) would mean that the framework is fragile.

More recently, Stephenson et al. [90] have pointed out that
the selection of a proper subset of games for comparing a
new algorithm with others is critical, as using a non-suitable
representative subset may have a bias to some algorithms.
More general, the questions is, given a set of sample problems,
how to sample a subset as fair as possible for the algorithms to
be tested, and to avoid the bias to any of the algorithms. The
authors use an information-theoretic method in conjunction
with game playing data to assist in the selection of GVGAI
games. Games with higher information gains are used for
testing a new agent.

X. DISCUSSION AND OPEN RESEARCH PROBLEMS ON
SINGLE- AND TWO-PLAYER PLANNING

The single- and two-player planning versions of GVGAI
are the ones that have received most attention and research.
Despite their popularity and efforts, the best approaches rarely
surpass an approximately 50% victory rate in competition
game sets, with very low victory rate in a great number
of games. Similarly, different MCTS and RHEA variants
(including many of the enhancements studied in the literature)
struggle to achieve a higher than 25% victory rate in all (more
than a hundred) single-player games of the framework. There-
fore, increasing performance in a great proportion of games is
probably the most challenging problem at the moment.

Literature shows multiple enhancements on algorithms and
methods aiming to improve this performance, but in the vast
majority of cases the improvements only affect a subset of
games or certain configurations of the algorithms. While this
is understandable due to the nature of general video game
playing, it also shows that the current approaches does not
work in order to reach truly general approaches that work
across board.

The work described in this survey has shown, however,
interesting insights that can point us in the right direction. For
instance, several studies show that using more sophisticated
(i.e. with A* or other methods such as potential fields)
distances to sprites as features works better than Euclidean
distances. The downside is that computing these measurements
take an important part of the decision time budget, which can’t
be used in case it is needed for some games or states where
the best action to take is not straight-forward.



In general, one could say that one of the main points to
address is how to use the decision time more wisely. Some
approaches tried to make every use of the forward model
count, like those agents that attempt to learn facts about the
game during the rollouts of MCTS. Again, some attempts in
this direction have provided marginal improvements, but the
problem may be trying to design a general feature extractor.
In other words, what we try to learn is influenced by what
we know about existing games (i.e. some sprites are good,
other are bad, some spawn other entities and there are sprites
- resources - that the avatar can collect). Some games may
require features that have not been thought of, especially
because the challenge itself presents games that have not been
seen before.

Another improvement that has been tried in several studies
is the use of macro-actions (in most cases, a repetition of an
action during several consecutive steps) to i) make the action
space coarser; and ii) make a better use of the time budget.
Again, these modifications have improved performance in
certain games (including some that had not been won by any
algorithm previously) but they either did not have an impact
in others, or they made the performance worse. It is likely
that different games can benefit from different macro-action
lengths (so work could be done on trying to automatically and
dynamically adapt the number of times the action is repeated)
but also of more complex structures that allow for high-level
planning. In fact, games that require high-level planning are
still an open problem to be solved in this setting.

Games classification and the use of hyper-heuristics are also
an interesting area for research. Some of the best approaches
up to date, as YOLOBOT, do make a differentiation between
stochastic and deterministic games to later use one or another
algorithm. An open challenge is how to make this classification
more accurate and detailed, so an approach could count on a
portfolio of (more than 2) algorithms that adapt to every game.
Attempts have been made to classify with game features, but
results suggest that these classifications and the algorithms
used are not strong enough. Devising more general features
for this, maybe focused on the agent game-play experience
rather than game features, is a line of future research.

All these unsolved issues apply to both single- and two-
player settings, although the latter case adds the difficulty of
having an opponent to compete or collaborate with. There are
two open problems that arise from this: first, no study has
been made that tries to identify the game and behavior of the
opponent as collaborative or competitive. Analysis of the other
player’s intentions can be seen as a sub-field on its own, only
that in this case we add the general game playing component
to it. Secondly, some advancements have been done in using
opponent models that go beyond random, but investigation in
more complicated opponent models that better capture and
learn the behavior of the other player could potentially yield
better results.

Beside the development of agents for game playing, AI-
assisted game design, automatic game testing and game
debugging using GVGAI agents have attracted researchers’
attention. Some work around evolving game skill-depth using
relative performance between GVGAI agents have been done

recently, and most of this work has been focused on Relative
Algorithm Performance Profiles (RAPP), where performance
is measured in terms of how well the agents play the given
games. However, it is sensible to explore other aspects of agent
game-play to influence game design. Factors like the amount
of level explored by different agents (so a generator favors
those levels or games that allow for a wider exploration, or
maybe a progressive one), their decisiveness [91] on selecting
the best action to take or the entropy of their moves can also
be used to this end.

XI. EDUCATIONAL USE OF GVGAI

The GVGAI framework has been used to provide engaging
assignments for taught modules, and as the basis for many
MSc dissertation projects. The descriptions below give an idea
of the educational uses of GVGAI but are not intended to be
an exhaustive list.

A. Taught Modules

GVGAI has been used in at least two distinct ways within
taught modules. The most typical way is to use design specific
aspects of the course around the framework, teaching the
students about the main concepts of GVGAI with examples
of how to write agents for the selected tracks. This is then
followed up with an assignment, where a significant weight is
given to how well each student or group’s entry performs in the
league. Several institutions have run private leagues for this,
including Otto Von Guericke Universität Magdeburg, Univer-
sity of Essex, University of Muenster, Universidad Carlos III
de Madrid, Universidad de Malaga and New York University.
Running a private league means the course supervisor has full
control over the setup of the league, including when students
can enter and how thoroughly the entries are evaluated, and
the set of games to evaluate them on. For the 2-player
track, this also allows control over the opponents chosen.
The Southern University of Science and Technology and the
Nanjing University have also used GVGAI framework in their
AI modules, without running a private league, as assignments
when teaching search or reinforcement learning methods.

Another use-case in taught modules is to teach the VGDL
part of framework, then set the development of novel and
interesting games as the assignment. This was done to good
effect at IT University of Copenhagen, where the students
produced a number of challenging puzzle games that were later
used in the training and validation sets of the planning track. A
similar approach was taken in a module on AI-Assisted Game
Design at the University of Essex, where planning track games
were also produced.

B. MSc Dissertation Projects

GVGAI offers an extensive range of interesting research
challenges, some of which have been addressed in MSc
dissertation projects. The majority of the ones we are aware of
have focused on the single-player planning track, but this is not
surprising as it was the first track to be developed. The single-
player planning track also has the benefit of providing some



good sample agents as starting points for further work either
in the sense of extending the sample agents to achieve higher
performance, or using the sample agents as a useful source
of comparison. A good example is the work on MCTS with
options, in which options refer to action sequences designed
for specific subgoals. The version with options significantly
outperformed the sample MCTS agent on most of the games
studied: as with many cases what began as an MSc thesis was
later published as a conference paper [29]. In our experience
this usually provides an excellent educational experience for
the student. Other planning track thesis include [21], the real-
time enhancements of [22], knowledge-based variants [46] and
goal-oriented approaches [53].

Beyond the planning tracks, other examples (already de-
scribed in this survey) include applying Answer-Set Program-
ming (ASP) [92] or GAs [69] to the level generation track and
learning from game screen capture [63]. [63] was essentially a
learning track approach before the learning track was running.
Finally, another approach is to extend the framework in some
way, such as developing the two-player learning track [93].

XII. FUTURE DIRECTIONS

The GVGAI framework and competition are in constant
development. The opportunities that this benchmark provides
for different lines of research and education are varied, and
this section outlines the future directions planned ahead for
the following years.

A. New tracks

As new challenges are proposed, the possibility of organiz-
ing them as competition tracks arise. Below are listed some
possible new tracks that can attract interesting research areas.

1) Automatic game design: The game design involves,
but not limited to, game generation, level generation, rule
generation and play-testing (playing experience, game feeling,
fun, etc.), study of game market, user interface design and
audio design. The automatic game design becomes an active
research topic since the late 2000’s. A review of the state of
the art in automatic game design can be found in [80].

A Game Generation track would aim at providing AI
controllers which automatically generate totally new games or
game instances by varying the game parameters, i.e., parameter
tuning. How to achieve the former is an open question. The
straight-forward way would be providing a particular theme, a
database of game objects, or searching spaces of game rules,
with which the participants can generate new games. The ideal
case would be that the controllers automatically create totally
new games from nothing. Though there is a yawning gulf
between aspiration and reality, an interdisciplinary field com-
bining automatic game design and domain-specific automatic
programming is expected. The latter, automatic game tuning,
is relatively easier. Some search-based and population-based
methods have been applied to game parameter optimization
aiming at maximizing the depth of game variants [80] or
finding more playable games.

2) Multi-Player GVGAI: Multi-agent games has drawn
people’s attention, for instance, real time strategy games (e.g.
StarCraft) and board games (e.g. Mahjong). The study of
multi-agent GVGAI is a fruitful research topic. Atari games
can also be extended to multi-agent games. In particular,
the Pac-Man can be seen as a multi-agent game and related
competitions have been held since 2011. The most recent
Ms Pac-Man vs Ghost Team Competition [1], which included
partial observability, was held at CIG in 2016. Nevertheless,
a more general multi-agent track is favorable.

The interface of the Two-player Planning Track was initially
developed for two or more players, so it has the potential to
be expanded to a Multi-player Planning Track, in which an
agent is allowed to control more than one player or each of
the players is controlled by a separate agent. This future track
can be expanded again as a multi-agent learning framework,
providing a two-or-more-player learning track.

3) Turing Test GVGAI: Determining if an agent that is
playing a game is a human or a bot is a challenge that has
been subject of study for many years [1], and the idea of
applying it to a general video game setting is not new [94].
This offers an interesting opportunity to extend the framework
to having a Turing Test Track where participants create AI
agents that play like humans for any game that is given. Albeit
the understandable difficulty of this problem, the interest for
research in this area is significant: what are the features that
can make an agent play like a human in any game?

B. General directions

There are several improvements and additions to the frame-
work that can be done and would potentially affect all existent
and future competition tracks. One of these continuous mod-
ifications is the constant enlargement of the games library.
Not only new games are added for each new edition of the
competition, but the work done on automatic game design
using the GVGAI framework has the potential to create infinite
number of games that can be integrated into the framework.

Adding more games can also be complemented with com-
patibility with other systems. Other general frameworks like
OpenAI Gym [95], Arcade Learning Environment (ALE) [96]
or Microsoft Malmö [97] count on a great number of single-
or multi-player, model-free or model-based tasks. Interfacing
with these systems would greatly increase the number of
available games which all GVGAI agents could play via a
common API. This would also open the framework to 3D
games, an important section of the environments the current
benchmark does not cover.

With regards to the agents, another possibility is to provide
them with a wider range of available actions. For instance,
the player could be able to apply more than one action
simultaneously, or these actions could form a continuous
action space (i.e. pressing a throttle in a range between 0 and
1). This would enhance the number of legal combinations for
the agent to choose from at each decision step.

Beside the framework itself, the website for GVGAI could
also be improved to provide better and faster feedback to
the competition participants. More data analysis features can



be added, such as visualization of the score changes during
the game playing, the action entropy and the exploration of
the game world (heat-map of visited positions). A related
work is to provide better and more flexible support for game
play metric logging, better support for data mining of results
together with visualization, and better data saving, which will
help enabling to upload replays (i.e., action logs) from AI
agents and human play-throughs.

Another envisaged feature is being able to play the game
in a web browser (without any download or installation) by
an AI agent or human, and visualize the analyzed features
during the game playing in real time. A bonus will be the
easy parameterization options for games, thus a player or
an AI agent can easily set up the parameters and rules to
define the desired game by inserting values directly or generate
pseudo-randomly a level to play using some pre-implemented
automatic game tuning techniques given some particular goals
or features.

XIII. CONCLUSIONS

The GVGAI framework offers the most comprehensive
system to date for evaluating the performance of general
video game playing agents, and for testing general purpose
algorithms for creating new games and creating new content
for novel games. The framework has been used in multiple
international competitions, and has been used to evaluate the
performance of hundreds of general video game agents.

The agent tracks cater for planning agents able to exploit a
fast forward model, and learning agents that must learn to react
sensibly without the benefits of a forward model. The planning
track already comes in single- and two-player versions; the
learning track is currently single-player only, but with a two-
player version envisaged. Although long-term learning may
also be used within the planning track, the best-performing
agents have, as far as we know, not yet done this. Recent
successes in Go indicate what can be achieved by combining
learning and planning, so applying a similar system within
GVGAI is an interesting prospect. In fact, the combination of
different approaches into one is an interesting avenue of future
research. And example is the work described in this survey that
mixes learning and procedural level generation [67], but one
could imagine further synergies such as content generation and
learning for two-player games.

The main alternative to GVGAI is the ALE [96]. At the time
of writing, ALE offers higher-quality games than GVGAI as
they were home-console commercial games of a few decades
ago. In GVGAI terms, ALE offers just two tracks: single-
player learning and planning, with the learning track being
the more widely used. For future work on machine learning in
video games, we predict that the two-player tracks will become
the most important, as they offer open-ended challenges based
on an arms race of intelligence as new players are developed,
and are also outside of the current scope of ALE. Although
ALE has had so far a greater uptake within some sectors of
the machine learning community, GVGAI benefits from being
much more easily extensible than ALE: it is easy to create new
VGDL games, easy to create new levels for these games, and

easy to create level generators for them as well. It is also easy
to automatically generate variations on existing VGDL games
and their levels. This allows for training on arbitrarily large
sets of game variations and level variations. In contrast, agents
trained on ALE games run a serious risk of overfitting to the
game and level they are trained on. An immediate priority is to
test the rich set of ALE agents on the equivalent GVGAI-tracks
to gain a sense of the relative difficulty of each environment
and to learn more of the relative challenges offered by each.

The content creation tracks offer an extremely hard chal-
lenge: creating rules or levels for unseen games. Promising
directions include the further development and exploitation of
a range of general game evaluation measures [91], and greater
use of the best GVGAI agents to perform the play-testing of
the novel rules and levels.

The VGDL has been an important part of GVGAI to date,
since it makes it possible to rapidly and concisely specify
new games. However, it is also a source of limitation, as its
limited expressiveness makes it hard to make games which
are fun for humans to play. VGDL also limits the ease with
which complex game mechanics can be embedded in games,
which in turn limits the depth of challenge that can be posed
for the GVGAI agents. Hence an important future direction
is the authoring of GVGAI-compatible games in any suitable
language which conform to the necessary GVGAI API in order
to ensure compatibility with the desired GVGAI track.

Finally, while the above discussion provides a compelling
case for the future of GVGAI as a tool for academic study, we
also believe that when it reaches a higher level of maturity it
will provide an important tool for game designers. The vision
is to provide an army of intelligent agents with a range of
play-testing abilities, and a diverse set of metrics with which
to analyze a range of important functional aspects of a game.
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[89] D. Pérez-Liébana, S. Samothrakis, J. Togelius, T. Schaul, and S. M.
Lucas, “Analyzing the Robustness of General Video Game Playing
Agents,” in Computational Intelligence and Games (CIG), 2016 IEEE
Conference on, 2016, pp. 1–8.

[90] M. Stephenson, D. Anderson, A. Khalifa, J. Levine, J. Renz, J. Togelius,
and C. Salge, “A Continuous Information Gain Measure to Find the
Most Discriminatory Problems for AI Benchmarking,” arXiv preprint
arXiv:1809.02904, 2018.

[91] V. Volz, D. Ashlock, S. Colton, S. Dahlskog, J. Liu, S. Lucas, D. Perez-
Liebana, and T. Thompson, “Gameplay Evaluation Measures,” Dagstuhl
Follow-Ups, 2017.

[92] X. Neufeld, “Procedural level generation with answer set programming
for general video game playing,” Master’s thesis, University of Magde-
burg, 2016.

[93] R. D. Gaina, “The 2 Player General Video Game Playing Competition,”
Master’s thesis, University of Essex, 2016.

[94] J. Lehman and R. Miikkulainen, “General Video Game Playing as
a Benchmark for Human-Competitive AI,” in AAAI-15 Workshop on
Beyond the Turing Test, 2015.

[95] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai Gym,” arXiv preprint
arXiv:1606.01540, 2016.

[96] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The Arcade
Learning Environment: An evaluation platform for general agents,” J.
Artif. Intell. Res.(JAIR), vol. 47, pp. 253–279, 2013.

[97] M. Johnson, K. Hofmann, T. Hutton, and D. Bignell, “The Malmo
Platform for Artificial Intelligence Experimentation,” in IJCAI, 2016,
pp. 4246–4247.


