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Abstract. This paper proposes a benchmark for multi-objective opti-
mization based on video game playing. The challenge is to optimize an
agent to perform well on several different games, where each objective
score corresponds to the performance on a different game. The bench-
mark is inspired from the quest for general intelligence in the form of
general game playing, and builds on the General Video Game Al (GV-
GAI) framework. As it is based on game-playing, this benchmark incor-
porates salient aspects of game-playing problems such as discontinuous
feedback and a non-trivial amount of stochasticity. We argue that the
proposed benchmark thus provides a different challenge from many other
benchmarks for multi-objective optimization algorithms currently avail-
able. We also provide initial results on categorizing the space offered by
this benchmark and applying a standard multi-objective optimization
algorithm to it.
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1 Introduction

Very many problems more or less naturally lend themselves to a multi-objective
formulation, and thus to be solved or understood through multi-objective op-
timization. This creates a demand for better multi-objective optimization algo-
rithms, which in turn creates a demand for fair, relevant and deep benchmarks
to test those algorithms. It would therefore seem important for the furthering
of research on multi-objective optimization to create such benchmarks, ideally
through building on real, challenging tasks from important application domains.

In the research field of Al and games, there is a long-standing tradition of
benchmarking algorithms through their performance on playing various games.
For a long time beginning very early on in the history of computer science,
Chess was one of the most important AI benchmarks, and advances in adversar-
ial search were validated through their performance on this classic board game.



Later on, as classic board games such as Chess, Checkers and eventually Go suc-
cumbed to the advances of algorithms and computational power, attention has
increasingly turned to video games as AI benchmarks. The IEEE Conference on
Computational Intelligence and Games now hosts a plethora of game-based Al
competitions, based on games such as Super Mario Bros [23], StarCraft [14], Un-
real Tournament [10], and Angry Birds [19]. These offer excellent opportunities
to benchmark optimization and reinforcement learning algorithms on problems
of real relevance.

For many—but not all-—games, one can easily identify a single and relatively
smooth success criterion, such as score or percent of levels cleared. This makes
it possible to use single-objective optimization algorithms, such as evolutionary
algorithms, to train agents to play games. For example, when evolving neural
agents to drive simulated racing cars, one can simply (and effectively) use the
progress around the track in a given time span and as the fitness/evaluation
function [21]. However, in many cases the training process can benefit from
multi-objectivization, i.e. splitting the single objective into several objectives, or
constructing additional objectives in addition to the original one. For example,
when using genetic programming to learn a car-driving agent, adding an extra
objective that promotes the use of state in the evolved program can improve
performance and generalization ability of the agent [1]. In another example, car-
driving agents were evolved both to drive well and to mimic the driving style of
a human; while these objectives are partially conflicting, progress towards one
objective often helps progress towards the other as well [25]. Finally, when us-
ing optimization methods for procedural content generation—generating maps,
levels, scenarios, items and such game content—the problem is often naturally
multi-objective. For example, when evolving balanced maps for StarCraft, it is
very hard to formulate a single objective that accurately captures the various
aspects of map quality we are looking for [22].

So far we have talked about playing individual games. Recently, there has
been a trend toward going beyond individual games and addressing the problem
of general game playing. The idea here is that to be generally intelligent, it is
not enough to be good at a single task: you need to have high performance
over some distribution of tasks. Therefore, general video game playing is about
creating agents that can play not just a single game, but any game adhering
to a specific interface. The General Video Game AI (GVGAI) Competition was
developed in order to provide a benchmark for general video game playing agents.
The competition framework features several dozens of video games similar to
early 80s arcade games, and competitors submit agents which are then tested
on unseen games, i.e. games that the competitor did not know about when
submitting the agent [15, 16].

In other words, general video game playing agents should be optimized for
playing not just a single game well, but a number of different games well. This
immediately suggests a multi-objective optimization benchmark: select a num-
ber of games, and optimize an agent to perform well on all of them, using the
performance on each game as an objective.



This paper describes a multi-objective optimization benchmark constructed
on top of the GVGAI framework. We first describe the underlying technolo-
gies this builds on, including the GVGAI framework (Sect. 2), the Monte Carlo
tree search algorithm (MCTS, Sect. 3), and the specific parameterizable agent
representation developed for the benchmark (Sect. 4). We then quantitatively
characterize the benchmark through sampling in the space of agent parameters,
and by applying a standard multi-objective optimization algorithm on several
versions of the benchmark. More precisely, our experimental analysis (Sect. 5)
shall answer the following questions:

— Which games enable learning via proper feedback and are different enough
from each other so that multi-objective optimization makes sense?

— What is the experienced noise level and how much noise can be tolerated
while doing optimization?

— How do we aggregate scores, winning, and set the run length in a meaningful
way? What are the properties of the resulting optimization problem?

Finally, we summarize the features of the obtained optimization problem and
compare the setting to the one of other recent multi-objective benchmarks / com-
petitions in Sect. 6 before concluding in Sect. 7.

The main contribution of this paper is a new multi-objective optimization
benchmark based on general video game playing, which we hope can help the
development of better such optimization algorithms. However, we also envision
that this tool leads to an improved understanding of the MCTS algorithm, which
our parameterizable agent builds on. Employing multi-objective optimization
algorithms could further help elucidating the relations between different games
based on what agent configurations play them well. A first contribution in this
direction is some insight about the conflicts between adapting the agents to-
wards different games, based on an experimental analysis. We assume that very
wide and large Pareto front approximations stand for strongly conflicting game
requirements (towards the agent), whereas small and narrow Pareto front ap-
proximations mean that the gameplay is rather similar and can be accomplished
well by only one agent (or that the problem is so difficult that getting near to
the real Pareto front is very hard).

2 Extending the General Video Game AI Framework

The General Video Game AI (GVGAI) framework is a Java framework that
allows running different games. Most of these games are ports of old Arcade of
home computer games or some newer indie games. The GVG-AI framework has
been continuously extended and now contains more than 80 implemented games.
Figure 1 shows 4 different games implemented in the framework where they range
from puzzle to action/arcade games. The framework also enables users to easily
design new games by describing them in the Video Game Description Language
(VGDL) [7]. VGDL is a declarative description language that enables defining
the game itself and the used levels (usually 5 levels are defined for each game) in



Fig. 1: Different games in the GVGAI framework in order from top left to bottom
right: Defem, Pacman, Zelda, and Frogs.

a human-readable form. The game description contains information about game
objects, interactions, goals, etc., While the level description contains information
about how game objects are spatially arranged.

The GVGAI framework was initially introduced to allow people to implement
their own Al agents that can play multiple of unseen games. The best way
to encourage people to use a new framework is by organizing competitions.
Multiple different competition were organized at different conferences starting
at Computational Intelligence and Games (CIG) 2014 [16]. The best agents so
far can win only 50% of 50 different games in the framework [3]. After the success
of this competition, multiple different tracks were introduced in 2016, such as
the level generation track [12] and the 2 player planning track [9]. In the level
generation competition, the participants try to design a general level generator
that generates game levels for any game provided its description. The two-player
planning track is similar to the original track but for games that have two players.
Games can be cooperative or competitive based on the game description. In all
competition tracks, agents don’t know what game they are playing and have to
figure it out based on interactions or simulations.

In this work, we are introducing a new track for the GVGAI competitions,
intended to attract researchers from a different area, namely multi-objective op-
timization. The goal for this competition is to optimize a parameterized Monte-
Carlo Tree Search (MCTS) algorithm to perform well on different games. This
agent and the underlying main algorithm will be described in sections 4 and 3.

This new competition track (and its associated benchmark software) aims
to obtain a deeper understanding of the induced landscape of different MCTS
Upper Confidence Bound equations (explained in section 3). This knowledge will
then enable creating better hyper-heuristic agents [13]. Hyper-Heuristic agents
are Al agents that can change the current algorithm or heuristic (parameters
of the basic equation in our current context), based on the current game. By



means of our approach, we also provide a new benchmark for multi-objective
optimization, with a fair number of parameters (14 in our current version), a
scalable number of objectives (we use 3 here but this only depends on the number
of games taken into account), also adding limited noise to problem features, as
could be expected in many real-world scenarios. Thus we obtain a new tool for
measuring the performance of different multi-objective algorithms under near-
realistic conditions, with the ability to explain (after revealing the games and
the exact encoding) the MCTS agent behavior that results from the best found
solutions.

3 Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) [6] is a stochastic game tree search algorithm
that balances between exploiting the best nodes and exploring new nodes. As
usual, every node of the tree is associated with one possible action that may be
played next. Every specific path through the tree resembles the moves of one
game (or at least the first n moves of the game if the game has n levels). MCTS
is divided into four main steps:

1. Selection: the algorithm selects a suitable node to investigate further. As
mentioned before, it tries to balance between exploiting the best nodes and
exploring new nodes. It uses an equation called Upper Confidence Bound
(UCB) to achieve this balance.

2. Expansion: the algorithm selects which child node to expand at the current
node. If there is no more nodes to expand, the algorithm returns to step 1.
In vanilla MCTS, it picks a random node to be expanded.

3. Simulation: the algorithm simulates what will happen in future by applying
a forward model. It plays out random actions until a terminal state is reached
(win or loss), time is up, or a predefined depth is reached.

4. Backpropagation: the algorithm evaluates the simulated state (by means
of a heuristic if it is not a terminal state), then it updates all parent nodes
up to the root. This means that for every node, the information stored in
the children is aggregated. After this step, the algorithm repeats all these
steps starting from the root, until it finishes (usually after a specified time
or number of iterations).

After the whole algorithm has been terminated (there is no natural ending),
we have to choose one move that is actually performed, and usually the one
with the highest win rate is chosen. The nodes that reside directly under the
root aggregate all known information about the consequences of what happens
after the action associated with this node is played next.

The most well-known UCB equation is UCBI1 1, and it is divided into two
terms. The first term pushes search to exploiting the best node so far while the
second part controls the effort spent on exploring new nodes.



(1)

In addition to many other extensions (such as integration of heuristics that
represent human expertise) to classic MCTS agents [20], researchers have ex-
plored modifying the UCB equation in order to obtain different behaviors of
MCTS agents. Some of these modification are done manually, such as using
MixMax instead of the average value as the exploitation term [8, 11, 17]. Other
researchers used genetic programming to find alternatives for the current UCB
equation. These approaches have been applied to different games such as Go [5]
by Cazenave or games in the GVG-AI framework [4] by Bravi et al.

4 A Parameterizable Agent as Optimization Problem

The findings from Bravi’s work provide us with multiple different UCB equations
for different games. Each equation is evolved over a certain game and tested
against all other games in the framework. The evolved equations have terms
that explain the nature of the game. For example; if the game goal is to collect
all the moving butterflies that move randomly everywhere. The evolved equation
will have a term to explore different map locations to find all of them. In this
work, we combined features from all of the evolved equations from Bravi’s work
into one big, parameterized equation, depicted in (2). This equations can be seen
as a very general formula for node selection, which can be specified into a very
large number of different strategies depending on its parameterization.

. Inn
UCBopr = PoX; + Prmax(X;) + Po(—)" + PyEL; + Psmin(Dppe) "+

i (2)
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Here, X is the total reward of the current node, n is the number of visits
for the parent node, n; is the number of visits for the current node, E,, is the
number of times a certain tile is visited providing its x,y position, Dy, is the
distance to a NPC? object in the game, D, is the distance to a portal object
in the game, D,,,, is the distance to a movable object in the game, and D, is
the distance to a resource object in the game.

The first two terms are the most frequently ones representing exploitation in
the evolved equations. If their coefficients equal ¢ and 1 — g, we have the MixMax
term. The rest of the terms stand for different ways of exploration, either based
on the tree information (3"¢ term), space information (4" term), or different
game sprite information (the rest of the terms).

To summarize, we have 14 different parameters to set (or optimize), where
each parameter can take values between -1 to 1. Each term in equation 2 has a

3 non-player character, usually but not necessarily adversarial



different meaning, based on the sign of the parameter. However, we can expect
that the first two terms (exploitation terms) most likely will have positive val-
ues. The other terms (exploration terms) have different meanings based on the
sign. Zero value means this term doesn’t have any effect on the agent behavior.
Negative values mean that this node/tile/sprite should be avoided while playing
the game, positive values mean that getting closer to a sprite or accessing the
same visited tile/node will be rewarded.

In the remainder of this section, we provide some information concerning im-
plementation and interface, being well aware that the actual competition setting
may differ from this in details.

We wanted our interface to be as accessible as possible and the problem
be treated as any other (noisy) black box optimization problem. Therefore, we
designed the interface to be language independent. A solution (14 numbers) is
evaluated by providing it as set of command line parameters to an executable
Java archive (JAR) file. After running the parameterized MCTS on all three
games a predefined number of times, the average objective value per game is
written to a file, together with a control flag that indicates if the execution
ended correctly or not. The objective values have been encoded according to
(3), with win being 1 if the game is won, and 0 else. This weights winning the
game much higher than achieving a high score, and for most GVGAI games
the difference is huge. However, there is no defined maximum score that can be
obtained for one game, so that the ratio can vary.

score
1000 (3)

Whenever we perform test runs with a multi-objective optimization method
(we employ the SMS-EMOA [2] as it is one of the most popular ones, but it could
also be another one) in the following, we switch to minimization by means of the
transformation fsms = 3 — fzame, resulting in a Nadir point at (3, 3,3). We take
this also as reference point, such that the maximal (theoretical) hypervolume
between the Pareto front and the origin is 27. However, this would mean that
we would win every single game with a score of 2000, which is not possible in
most games. The real maximum is therefore unknown, but considerably smaller.
E.g., if the achieved Pareto front approximation contains points that realiably
win every one of the 3 games (but do not get a high score), the hypervolume
would be in the range of 3% — 23 = 19.

fgame = win +

5 Experimental Analysis

By means of our experimental analysis, we generally investigate the suitability
of the previously described setup as benchmark problem. We do this in several
steps. At first, we select appropriate games by looking at their adaptability
value [18]. We then consider the noise level in order to find out how stable
single measurements are and how they must be aggregated. Finally, we perform
some test optimization runs, relying on the SMS-EMOA [2] in order to see how
competition results would look like.



5.1 Game Selection

From the currently available 80 games, we picked 12 that seemed to be interest-
ing and suitable for tackling them with the parametrizable MCTS-based agent
described in Sect. 4. These games were selected from different clusters based on
Bontrager’s work [3]. They were selected equally from the top 3 hardest clusters
(all clusters except the easiest one). Additionally, we take into consideration that
the games shall either be solvable easily (i.e. Frogs) or provide feedback often
(i.e. Pacman). We avoided long rewarding puzzle games because optimization
methods would not get any improvement feedback except from win and loose.
This is the list of the 12 considered games (Figure 1 shows some screenshots):

— Defem: a port of an indie-game with the same name. The goal of the game is to
survive. The player should avoid/kill enemies that are spawning in the level. The
player shoots automatically in any random direction.

— Eggomania: a port of a mini-game in Pokemon stadium 2. The goal is to catch
all the falling eggs before they reach the ground.

— Frogs: a port of Frogger, a famous Atari game. The goal is to cross the street and
the lake to the other side without getting hit by cars or drowning in water.

— Modality: a puzzle game about two different dimensions. The goal is to push a
tree to its correct spot. The level is divided into two colors, each color represent
a separate dimension. The player/tree can only pass from one dimension to the
other through certain spots in the map.

— Pacman: a port of Pacman game. The goal is to eat all the pills without being
caught by the chasing ghosts.

— Painter: a puzzle game where the player plays as a painter. The goal is to change
all the level tiles to be colorful. The tile color toggles between plain and colorful
when the player pass over it.

— Plants: a port of the indie-game Plants vs Zombies. The goal is to prevent waves
of zombie from reaching your house. The player can grow plants that shoot the
zombies to kill them and the zombies attack back when they are close enough.

— Zelda: a port of the dungeon system in The Legend of Zelda. The goal is to get
the key and go to the exit without getting killed. The player can kill the enemies
using his sword.

— Boulderdash: a port of Boulder Dash a famous Atari game. The goal is to collect
10 gems and go towards the exit without dying. The player should avoid falling
boulders and monsters while searching for the gems.

— Sokoban: a variant of Sokoban, a famous Japanese puzzle game. The goal is to
destroy all the boxes in the level by pushing them into holes.

— Solarfox: a port of Solarfox a famous Atari game. The goal is to collect all the
jewels and avoid hitting the borders of the screen or getting hit by enemy missiles.

— Roguelike: an action game. The goal is to collect as much treasure as you can
and reach the exist. The path toward the goal is filled with moving monsters and
doors. The player needs to get a sword to protect itself from the monsters, and
collect keys to open the locked doors in its way.

We now analyze how well suited to optimization the different games are by
performing a well distributed sample over the search space [0, 1]**, do repeated
measuring and then look at the empirical tuning potential (adaptability, eqn. (4))



value as introduced in [18]. The ETP was originally considered to measure how
easy it is to obtain a better algorithm configuration by tuning, but the situation
here is quite similar (repeated runs due to noise, unknown peak performance,
vast parameter space). It takes the performance of the best (y,) and an aver-
age configuration (y,) and the semi-quartile range (non-parametric alternative
to standard deviation) at these points into account. The higher the computed
value, the easier it is to improve the performance, starting with an average con-
figuration. In case one semi-quartile range is zero, we set the ETP value to zero
as well.

median(y,) — median(y,) median(y,)— median(y,)
5q(Ya) sa(yp)

ETP(y,,ya) = (4)
We perform the following experiment in order to remove unsuitable games -
games with very low ETP values - from this set.

Experiment: which games are well suited for a multi-objective benchmark?
Pre-experimental planning. After some preliminary tests, we found that 50
samples per game with 10 repeats each is a good compromise between runtime
and result quality. This combination requires about 30 hours of computation
time for the 12 games®.

Task. What ETP value do we require in order to keep a game? As concrete
values are difficult to estimate, we will order the games according to their ETP
and then look for a gap between “near zero” and “clearly larger than zero”.
Setup. We generate a common sample of 50 well distributed 14 parameter con-
troller configurations by means of the MaxiMin reconstruction (MMR) method
of Wessing [26], and run the agent 10 times for each sample point and each game,
recording the objective values.

Results/Visualization. Table 1 holds the measured ETP values for each game.
Note that the value gets zero as soon as one of the semi-quartile ranges get zero.

Game|| Defem|Sokoban| Roguelike| Frogs| Zelda|Boulderdash
ETP 0.72 0.0 0.0 0.0| 144.65 0.0
Game||Modality| Pacman |Eggomania|Painter|Solarfox Plants
ETP 0.0 16.49 0.0| 891.37| 46.25 11.54

Table 1: Expected tuning potential (ETP) for the 12 considered games.

Observations. 6 of the games have a zero value, whereas the non-zero values
for the other games vary quit a lot. It seems that Painter is the game with the
best adaptation/optimization potential, and Defem the one with the worst.

Discussion. Although there is some variance in the observed point samples for
Frogs, Eggomania, and Modality, the ETP values clearly recommend only using
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Defem, Zelda, Pacman, Painter, Solarfox, and Plants. However, Solarfox is a
special case: one cannot win, not even have a positive score, but only loose with
different negative scores. In consequence, the ETP is positive, but nearly all
objective function values for the game would lead to a point beyond the Nadir
point (such that the gradual differences in the signal would be cut out). Frogs
and Modality provide basically binary feedback (won or lost), and for Eggomania
more than half of the samples end up with 10 losses without any point in a row.
It seems reasonable that these are not really well suited for optimization; if
they are used, an additional difficulty is added (fitness cliffs). We thus end up
with a game selection of 8 games: Defem, Zelda, Pacman, Painter, Plants, Frogs,
Eggomania, and Modality.

We can also state that the ETP value provides valuable information, but the
necessities of the optimization process may lead to a positive ETP value when
the game is still unsuitable (in the case of Solarfox). Adding 3 more games with
(almost or completely) binary signals may make the problem more interesting
and shall be considered.

5.2 Analyzing Variance and Noise

In this section, we analyze the parameterized agent and check its response to
noise and variance. We ran two experiments, the first one is running each game
using random parameters for 2000 times (without repetitions). Table 2 shows
the result of this experiment. As you can see, the mean is very low in all games
except for Modality and Painter. The reason is that both these games have a very
small map with a size of 4x4 tiles which make it easy for an agent to win it. Also,
we can notice there is no agent has won pacman. The main reason is that the
pacman map is very huge which takes a lot of time to finish it. Only Modality,
Painter, and Frogs have a very high standard deviation compared to the other
games which shows that these games are more sensitive to the parameter change
than others (or, as described above, have few very extreme attained objective
values).

In the second experiment, we picked 10 random configurations for the pa-
rameters, then we ran the configured agent on each game repeatedly 1000 times.

lGame ‘Mean‘ Std‘ Min‘ 25%‘ 50%‘ 75%‘ Max‘
Defem 0.033(0.099| 0.0] 0.001]0.032{0.046| 1.05
Frogs 0.105|0.306 0.0 0.0 0.0] 0.0|1.001
Modality |0.583|0.494 0.0 0.0{1.001{1.001|1.001
Painter 0.561(0.442| 0.039| 0.118]0.395|1.042{1.482
Zelda 0.011]0.102{-0.001|-0.001| 0.0{0.002{1.008
Pacman 0.025(0.036|  0.0] 0.002{0.009| 0.03|0.244
Eggomania| 0.01]0.095 0.0 0.0] 0.0/{0.001{1.116
Plants 0.045(0.154| 0.003| 0.016]0.021]0.026{1.109
Table 2: Average statistics over 2000 random configurations.
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Figure 2 shows a heat map representing the average values of the 1000 runs for
all 8 games and all 10 configurations. Darker colors mean the agent neither wins
nor obtains a descent score, brighter colors otherwise. Figure 3 shows the stan-
dard deviation of the previous experiment. Brighter colors shows more variance
in their results than darker colors. From analyzing the heatmaps, we can notice
that agent configuration numbers 3, 6, 8, and 10 loose almost all games and
therefore have small variance. Also, we can notice that both on Eggomania and
Plants repeated measurements of single agent configurations have a very low
standard deviation. This means that these these games behave more determin-
istic than the others. On the other hand, some configurations result in very high
standard deviations on Defem. One could argue that this is the noisiest game in

lGame [Defem[Frogs[Modality[painter[Zelda[Pacman[Eggomania[Plantsl
[Tterations| 181 [586 [ 148 [ 181 [114] 15 | 1 [ 2 |
Table 3: Number of iterations until the average error goes below 0.01.
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Fig.5: Figure (a) shows the average fitness of 500 repetitions of the 20 solutions
of the best Pareto front approximation of one run on {Painter, Pacman, Plants},
using the SMS-EMOA. . Figure (b) shows the standard deviations of the values
measured for Figure 5.
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the set. Pacman is somewhere in between, most likely due to the huge amount of
pills and the presence of the chasing ghosts, factors that surely increase variance.
Eggomania and Plants are very sensitive to the agent configuration as almost
50% of all the configurations lose the game.

Figure 4 shows the absolute error of the first configuration using different
number of samples for all 8 games. From the graph, we can see that all games
have error values around 0.05 from the start except for Frogs. Frogs is a very
noisy game, it takes 150 resamples to obtain an error of less than 0.05. Table 3
shows the number of resamples necessary to get an error of less than 0.01. We
notice that Pacman, Eggomania, and Plants need quite few resamples to reach
an error of less than 0.01 (at most 15 iterations). Therefore, these games are
more suitable for the optimization setting than others.

5.3 Test Optimization Runs

We perform some example runs with a standard multi-objective optimization
algorithm in order to find out how well the established optimization problems
are suited to be used as basis for a competition.

Experiment: Is the problem difficulty adequate? Do we obtain interesting fronts?
Pre-experimental planning. The run length of 500 evaluations (x3) with 2
repeats each (averaged) is designed to add up to a wallclock time of around 12-15
hours per run (single core).

Task. Our expectation is rather fuzzy: we strive for some variance in the runs,
but also some similarity (the problem should be difficult enough but not too
difficult). Also, we expect to find large fronts (more than 20 is not possible in
this setup), especially not a single dominating optimum.

Setup. We employ the SMS-EMOA [2] with a population size of 20 individuals
and otherwise standard parametrization. We choose the games Painter, Pacman,
and Plants as objectives, based on our previous findings (others are possible).
Results/Visualization. Figs. 6 and 7 show the dominated hypervolume and
number of solutions in the best front over 5 runs, respectively. Additionally, we
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take the resulting front of the first optimization run and measure how good the
solutions do on all 8 games (average and standard deviation shown in Fig. 5).
Observations. We see gradual improvements in the hypervolume as well as huge
jumps. There is a common tendency to improve, but with different speeds. The
number of solutions in the best front starts around 5 and reaches the maximum
of 20 around 250 evaluations (with one exception).

Discussion. Obviously, the optimization problem is neither trivial nor unfeasi-
ble, which corresponds well to our expectations. The amount of solutions in the
best front supports that multi-objective optimization actually makes sense here:
we have conflicts between the objectives. In future, this shall be investigated
further, also broadening the scope to more games.

6 Optimization Problem Characterization

As performance measure for comparing different algorithms on this problem we
want to employ the hypervolume dominated by the best Pareto front approxima-
tion. This is similar to what is used in the other recent multi-objective competi-
tions/benchmarks, the Bi-objective BBOB [24] and the Black Box Optimization
Competition BBComp® that features 2 and 3-objective tracks. However, unlike
the other recent multi-objective competitions/benchmarks, we have noisy func-
tion evaluations here, with 2 types of noise in different strengths, depending on
the actual game. If an agent can win often but not always, we have an almost
binary noise, only the aggregation of several measurements gets us nearer to the
real function value. The other type of noise is more gradual and stems from the
different rewards the agents get, this is especially visible for Pacman.

® http://bbcomp.ini.rub.de



7 Conclusions

In this paper, we introduced a multi-objective optimization benchmark based on
general video game playing, specifically the GVGAI framework. The task is to
optimize the parameters of a general video game playing agent so that it plays
several rather different games as well as possible. A parameterizable agent was
developed for this purpose, where the parameters are coefficients in a complex
formula for node selection in a Monte Carlo Tree Search Algorithm.

Testing was conducted to find a set of games on which the agent would have a
large performance variance depending on its parameterization, and which would
require so different playing styles that it would be likely that optimizing the
agent’s performance on them would yield partially conflicting objectives. A set
of such games were found, and testing of random parameters as well as multi-
ple samples of the same parameters showed that the variance in performance
value was not only high between different configurations, but also relatively
high between different samples of the same configuration. Attempts to optimize
agents using the SMS-EMOA algorithm showed that it is indeed possible to find
good solutions, that the objectives as expected are partially conflicting, and that
there is relatively high noise in the fitness evaluation. We believe that these char-
acteristics reflect many real-world problems, and that a benchmark with such
characteristics provides a useful complement to existing multi-objective ones.

Finally, it should be noted that the framework and experiments described
here are useful not only from the perspective of benchmarking multi-objective
optimization algorithms, but also from the perspective of exploring the design
space of games and generating new game-playing agents. It is for example an
interesting idea to sample several agents from different positions on a Pareto
front and then use hyper-heuristic methods to select the most appropriate agent
parameterization for a particular game [3, 13].
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