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ABSTRACT
We describe a search-based approach to generating new levels for
bullet hell games, which are action games characterized by and
requiring avoidance of a very large amount of projectiles. Levels
are represented using a domain-specific description language, and
search in the space defined by this language is performed by a novel
variant of the Map-Elites algorithm which incorporates a feasible-
infeasible approach to constraint satisfaction. Simulation-based
evaluation is used to gauge the fitness of levels, using an agent based
on best-first search. The performance of the agent can be tuned
according to the two dimensions of strategy and dexterity, making
it possible to search for level configurations that require a specific
combination of both. As far as we know, this paper describes the
first generator for this game genre, and includes several algorithmic
innovations.
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1 INTRODUCTION
Games of the same series or genre often share a number of game-
play elements and can sometimes feel as if they play very similarly.
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As such, games sometimes are differentiated based on the qual-
ity and quantity of their content. Some genres and series exhibit
this emphasis on content more strongly than others, and it is in
this space that Procedural Content Generation (PCG) [20] can be
particularly useful.

Content in the bullet hell genre is oftenmeasured by its challenge,
so developers often attempt to make their games punishingly hard.
However, players come with a wide variety of skill levels, and so
many bullet hell games add multiple difficulty levels in the hope
that the game can present challenging content to a wider variety
of players. It is entirely possible for designers to miss the mark on
easier content, making it too close in difficulty to harder content or
making it too easy to be interesting. This is a fundamental challenge
that can arise in game design, and one that may be lightened with
PCG techniques.

In this paper, we describe a PCG algorithm implementation de-
signed to generate bullet patterns for bullet hell games. Of particular
interest to this work is the infrastructure enabling the algorithm
to generate the patterns, as well as the algorithm itself, and the
means by which created patterns are evaluated. To that end, we
present Talakat, a description language designed to encapsulate
and describe bullet hell patterns, a variation upon the MAP-Elites
algorithm that generates Talakat descriptions, and a simulation
evaluation method that guides evolution toward levels of specific
challenge along the two dimensions strategy and dexterity.

2 BACKGROUND
Bullet hell is a subgenre of shoot ’em up games, where player char-
acters fire projectiles at enemies, which similarly fire projectiles
at the player. The goal of these games is generally to defeat ene-
mies while avoiding the projectiles that are fired at them. Notable
shoot ’em ups include SpaceWar (CoCoPaPa Soft, 1962) and Space
Invaders (Taito, 1978). Bullet hell games share this fundamental
concept, but are distinguished by a much higher quantity of bullets
as well as higher difficulty. Notable recent bullet hell games include
Jamestown: Legend of the Lost Colony (Final Form Games, 2011) and
Touhou Tenkuushou Hidden Star in Four Seasons (Team Shanghai
Alice, 2017).

The games of the bullet hell genre typically share a single core
formula [2], and the gameplay of many modern bullet hell games is
strikingly similar to that of games from 1995. Instead, many bullet
hell games are differentiated by the quality of their levels. This
does, however, raise the question of what qualities are desirable in
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a bullet hell level. Principal among these is playability. Games that
are difficult by design often walk a fine line between satisfyingly
challenging and simply impossible to complete. Playtesting is of
course important in ensuring playability, but a game that is chal-
lenging by design will require highly skilled (and harder to find)
players to validate a game. Additionally, players often expect bullet
hell games to be challenging. Some levels heavily emphasize what
is referred to as skillful dodging, which reward high dexterity and
fast reflexes. Bullet hell levels can also require the identification of
safe spots or planned paths, and reward intelligent planning and
long-term strategy.

2.1 Procedural Content Generation
Both industry and research groups have developed methods of
procedural content generation in games. In the industry, proce-
dural level generation has been particularly prevalent in strategy,
dungeon-crawling, and role-playing games. PCG in games dates as
far back as Rogue (Epyx, 1980), and remains a mainstay of modern
game design. Franchises such as Diablo (Blizzard, 1996), Mystery
Dungeon (Spike Chunsoft, 1993), and Disgaea (Nippon Ichi Software,
2003) have featured level generation as a core feature and a key
selling point. The idea of effectively infinite content is an appealing
one to both consumers and developers.

Researchers have developed and presented a number of methods
that can be used to generate levels in games. Especially popular in
this area of research is generation through evolutionary strategies.
Shaker et al discuss a means of generating personalized content for
Super Mario Bros through grammatical evolution [19]. Browne et al.
present the application of genetic programming toward the proce-
dural generation of games through the Ludi system, resulting in the
development of games such as Yavalath [1]. Sentient Sketchbook
utilizes a user-driven evolutionary algorithm to generate levels for
tile-based games [13]. Closer to the generation of bullet patterns is
the work presented by Hastings et al., which utilized online user-
driven neuroevolution techniques to procedurally generate novel
shot types for the game Galactic Arms Race [7]. We aim to use a
variation on MAP-Elites [15] with a simulation-based evaluation
to measure the quality and difficulty of a created level.

A key requirement of most procedural level generation is a rea-
sonable and workable representation of generated content. For
example, the Video Game Description Language (VGDL) repre-
sents content using a high-level description language that defines
entities and the behaviors between them [5] [18]. Game genera-
tion using VGDL has involved methodologies that mutate interac-
tions between game entities by modifying the script that generates
them [16]. Work involving PCG in Super Mario Bros demonstrates
the number of ways a level representation can take. For exam-
ple, Snodgras et al. generates levels using a higher order Markov
chain [22]. By contrast, Shaker et al. represented Mario levels using
abstract grammar based representations [19]. Tracery also presents
a grammar that can be used to procedurally generate game text.
The grammar acts as an abstract representation of parameters along
which the text is to be generated [3]. Using a grammar representa-
tion, it is possible to procedurally generate content using techniques
akin to grammatical evolution [17].

2.2 Simulation-based content evaluation
It is also important to have means to validate and evaluate the
generated content. One way to evaluate game content is simulation-
based evaluation using AI agents. Smith et al. make use of AI agents
to validate the playability of a platformer level in the Tanagra
framework [21]. Isaksen et al. use large-scale simulation-based
evaluation to explore the space of Flappy Bird variants and identify
sets of variables that result in interesting variants [8]. Silva et al.
also demonstrated the usage of AI-based playtesting in gameplay
analysis as well as the identification of unexpected imperfections
in the Ticket To Ride (Days of Wonder, 2004) board game [4]. For
bullet hells, one of the most important considerations is difficulty.
Difficulty, however, is a complex and fraught topic. Jennings-Teats
et al. present an implementation of Dynamic Difficulty Adjustment
(DDA) that generates levels with a difficulty specifically tailored
toward an individual player, creating harder content as the player
improves. This makes use of a feedback-based model, in which
player involvment and evaluation is required for the generation of
difficult content [10]. Isaksen et al. present a model of difficulty as a
function of dexterity and strategy, as well as an AI-based approach
to measuring these quantities [9]. Bullet hell patterns generally fall
neatly within this framework, emphasizing either dexterity-in the
form of surgical movements or quick reactions-or strategy-in the
form of safe spots, paths, and misdirections.

3 TALAKAT
Talakat 1 is a description language that describes bullet hell levels.
A Talakat script constitutes a single bullet hell level. Figure 1 shows
the full grammar of Talakat. Figure 2 shows an example of a Talakat
script. A single script is divided into two parts: the Spawner section
and the Boss section.

3.1 Spawners Section
The spawners section contains information about the bullet spawn-
ers. Bullet spawners are invisible objects that are responsible for
producing either bullets or additional spawners. The spawners sec-
tion consists of an array of spawner definitions. Each spawner has
a unique ‘id’ to identify it, as well as parameters that define its
spawning behavior. These parameters can include angle, speed,
number of spawned objects, etc. Complex patterns can be gener-
ated by overlaying different spawners on top of one another. For
example, Figure 2 utilizes three spawners: “one”, “two”, and “three”.
Spawner “one” generates 4 instances of spawner “two” evenly over
an arc of 360◦ (4 spawners at 90◦ intervals) every 4 frames. Every
12 frames, the spawner rotates 10 degrees. Spawner “two” spawns
3 bullets evenly over an arc of 30◦, each of which move at a speed
of 4 pixels/frame. The end result of this pattern is a boss that fires
3 bullets in a small arc in four directions three times, rotates 10
degrees, and repeats. Spawner “three” spawns 2 bullets over an
angle of 360◦ while rotating 2 degrees per frame and changing
direction once the spawner has rotated 180◦, creating a pattern that
fires bullets in a sweeping motion. Figure 3 shows this spawner
configuration in action.

1Detailed documentation of the grammar can be found at
https://github.com/amidos2006/Talakat/wiki/Scripting-Language
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⟨script⟩ ::= ⟨spawners⟩ ⟨boss⟩

⟨spawners⟩ ::= ⟨spawner⟩ | ⟨spawner⟩ ⟨spawners⟩

⟨spawner⟩ ::= id ⟨spawnerParameter⟩ ⟨spawnedParameter⟩
⟨bulletParameter⟩

⟨spawnerParameter⟩ ::= ⟨spawnPattern⟩ patternTime patternRe-
peat ⟨angleCSV ⟩ ⟨radiusCSV ⟩

⟨spawnPattern⟩ ::= ‘bullet’ ⟨spawnPattern⟩ | ‘wait’
⟨spawnPattern⟩ | id ⟨spawnPattern⟩ | ϵ

⟨spawnedParameter⟩ ::= ⟨numberCSV ⟩ ⟨angleCSV ⟩ ⟨speedCSV ⟩

⟨bulletParameter⟩ ::= ⟨radiusCSV ⟩ ⟨colorCSV ⟩

⟨numberCSV ⟩ ::= minValue maxValue rate interval ⟨type⟩

⟨angleCSV ⟩ ::= minValue maxValue rate interval ⟨type⟩

⟨speedCSV ⟩ ::= minValue maxValue rate interval ⟨type⟩

⟨radiusCSV ⟩ ::= minValue maxValue rate interval ⟨type⟩

⟨colorCSV ⟩ ::= minValue maxValue rate interval ⟨type⟩

⟨type⟩ ::= ‘circle’ | ‘inverse’

⟨boss⟩ ::= bossPosition bossHealth ⟨script⟩

⟨script⟩ ::= ⟨scriptEvent⟩ | ⟨scriptEvent⟩ ⟨script⟩

⟨scriptEvent⟩ ::= trigger ⟨events⟩

⟨events⟩ ::= ⟨event⟩ | ⟨event⟩ ⟨events⟩

⟨event⟩ ::= ⟨spawnEvent⟩ | ⟨clearEvent⟩

⟨spawnEvent⟩ ::= ‘spawn’ id speed angle | ‘spawn’ ‘bullet’ speed
angle

⟨clearEvent⟩ ::= ‘clear’ id | ‘clear’ ‘bullets’ | ‘clear’ ‘spawners’

Figure 1: Talakat language as a context free grammar. An-
gular brackets values such as <spawners> are non terminal,
quoted values such as ‘bullet’ are string terminals, while
other values such as minValue are number terminals.

3.2 Boss Section
The boss section contains information about the level. It defines
boss health, boss position, and contains the level script which details
boss behavior. Figure 2 contains an example of a simple boss section.
Boss health controls the length of the level. In figure 2, the length of
the level is specified to be 3000 frames. For this version of Talakat,
one point of boss health is depleted per frame regardless of player
action, making health and duration one and the same. Boss position
controls the placement of the boss in the level. In figure 2, the
boss will be in the upper center part of the level. The level script
describes events that trigger when the boss’ health reaches certain
thresholds. In figure 2, the boss has two events: the first event
spawns spawner “one” and triggers when boss health is at 100%
(that is, the boss opens with this event), and the second event clears

{
spawners:{

one:{
pattern:["two"],
patternTime:"4",
spawnerAngle:"0,360,10,12,circle",
spawnedSpeed:"0",
spawnedNumber:"4",
spawnedAngle:"360"

},
two:{

pattern:["bullet"],
patternRepeat:"1",
spawnedAngle:"30",
spawnedNumber:"3",
spawnedSpeed: "4"

}
three:{

pattern:["bullet"],
patternTime:"4",
spawnerAngle:"0,180,2,0,reverse",
spawnedSpeed:"2",
spawnedNumber:"2",
spawnedAngle:"360"

}
},
boss:{

bossHealth: 3000,
bossPosition: "0.5, 0.2",
script:[

{
health:1,
events:["spawn,one"]

},
{

health:0.5,
events:["clear,spawners", "spawn,

three"]
}

]
}

}

Figure 2: An example of a full Talakat script.

all of the previous spawners and spawns spawner “three” when the
boss’ health reaches 50%.

4 CONSTRAINED MAP-ELITES
Generating levels for a bullet hell game is a non-trivial problem. In
addition to playability, one must consider difficulty, visual aesthet-
ics, distribution, etc. Designing a fitness function to incorporate
these dimensions is challenging. Additionally, there is more than
one interesting level in the search space. For example: higher bullet
count does not guarantee a more difficult level. Therefore, using
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(a) (b)

Figure 3: The visual representation of the spawners specified
in Figure 2. Figure 3a shows the output of spawners “one”
and “two”. Figure 3b shows the output of spawner “three”.
The player is the small bug in the bottomof the screen,while
the boss is the yellow wig from the top.

a standard optimization algorithm or multi objective optimization
algorithm may be insufficient as it may fail to consider possible
optima in remote reaches of the search space. It is therefore impor-
tant to use an algorithm that can comprehensively search multiple
subspaces and identify the optima contained in those areas.

4.1 MAP-Elites
MAP-Elites [15] is a relatively new illumination algorithm that
explores each area of the search space. Illuminating techniques
are search algorithms that explore different areas of the search
space and don’t focus exclusively on the high performing areas.
We can use the MAP-Elites algorithm to find playable levels that
meet different criteria. For example, a level with very few bullets
but still requiring high agent movement, a level with many bullets
that cover a small area, and so on. An initial experiment using
a vanilla implementation of the MAP-Elites algorithm failed to
produce strong results. The recursive nature of Talakat scripts made
it possible to generate millions of spawners in a fraction of a second.
These spawners slowed down the generation process and made
it difficult to explore the search space in a reasonable timeframe.
In response, we decided to use a Feasible Infeasible 2 Population
(FI2Pop) genetic algorithm [12] on top of the MAP-Elites algorithm.

Constrained MAP-Elites is a hybrid algorithm that combines
the illuminating functionality of MAP-Elites with the constraint-
solving abilities of FI2Pop. As in standard MAP-Elites, this algo-
rithm maintains a map of n-dimensions where each dimension
is sampled. However, rather than a single chromosome, each cell
stores two populations. One represents the feasible population
which aims to maximize its fitness (measured as a function of playa-
bility), while the other is the infeasible population which attempts
to satisfy a set of constraints. Every chromosome is located at a
(cell, population) combination, and moves on those two levels: a

cell level and a population level. A chromosome can move between
cells if its properties change along one of the map’s dimensions. A
chromosome can also move between populations if it satisfies or
fails to satisfy its feasibility constraints.

4.2 Chromosome Placement
Upon generation, each chromosome is evaluated by an agent which
is explained in section 4.4. The results of the evaluation determines
the level’s cell and population placements. The map used for the
Constrained MAP-Elites has three dimensions: entropy, risk, and
distribution. These dimensions were chosen based on the belief that
they represent some aspect of difficulty in bullet hell levels. Entropy
reflects the amount of input required of the player by calculating the
information entropy using the first, second, and third derivatives
of the agent’s action sequence. In practice, entropy is correlated
to number of times the player changed direction, stopped while
moving, or began moving while stopped. Risk reflects the presence
of bullets in close proximity to the player. It is calculated by dividing
the screen into a grid and counting the number of squares around
the player that contain bullets. Distribution represents the amount
of space occupied by bullets. The distribution is calculated in a
similar fashion to the risk, by dividing the screen into a grid and
calculating the number of squares occupied by at least one bullet.
These three values are calculated by the agent during its evaluation,
and are used to place the level within its appropriate cell.

During the time of evaluation, the agent is also determining
the level’s population placement. A chromosome is placed in the
feasible population if it satisfies the following two constraints:

• Number of spawners doesn’t exceed a fixed maximum value.
• There are at least 10 bullets present for more than 50% of
frames.

The fitness of chromosomes in the feasible population is inversely
proportional to the remaining boss health (the inverse of remaining
boss health is an analog for survival time). A chromosome that
fails these constraints is placed in the infeasible population, where
fitness is calculated by multiplying the inverse of remaining boss
health by the percentage of frames that contain bullets.

4.3 Genetic Algorithm
The populations within the individual MAP-Elites cells are evolved
using grammatical evolution [17]. Grammatical evolution is distin-
guished from genetic programming algorithms in that grammatical
evolution uses a mapping between a set of numbers and the gram-
mar and acts on the numerical representation, whereas genetic
programming algorithms operate directly on expressions. Each
chromosome is represented as 11 arrays, each of which consists of
23 integers between 0 and 99. These numbers are mapped to the
Talakat script using the grammar defined in figure 1. The last array
is used to represent level events. To create new chromosomes, we
use uniform crossover over the 11 arrays, and uniform mutation on
the integer values of one of the sequences. It is important to note
that the parent chromosomes are retained, effectively implementing
100% elitism. Parent chromosome selection occurs by first selecting
a random cell from the map, and then using rank selection to select
its parent chromosome. Once a new chromosome is generated, it
is evaluated by the agent and placed in its cell and population as
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outlined in section 4.2. This paper will refer to a set of these mating
events as a generation. If, after the creation of a generation, a cell’s
population exceeds its capacity, the lowest performing chromo-
somes are removed starting from the infeasible population. In short,
the Constrained MAP-Elites algorithm operates as follows:

• Initialize, evaluate, and place the starting population within
the appropriate cells and populations.

• Run generation
– Create new chromosome

∗ Select parents
· Randomly select cell
· Select chromosome using rank selection
· Repeat if needed

∗ Create new chromosome using crossover or mutation
on selected parent(s) while retaining parent

∗ Evaluate and place new chromosome in appropriate cell
and population

∗ Repeat until end of generation
– Eliminate low performing chromosomes from cells that
are at or above capacity

• Repeat until end of experiment

4.4 Agent
All chromosomes are tested using an A* [6] agent. The A* agent’s
heuristic function consists of 4 parts: progress, lose, safety, and
future location. Equation 1 outlines the heuristic function used by
the A* agent. proдress is the the number of frames the agent has
survived so far, lose is equal to 1 if the agent dies and 0 otherwise,
sa f ety corresponds to the number of frames a completely stationary
agent would survive at its current position, up to a maximum of
10, and f uture corresponds to the agent’s distance from point on
the screen with the fewest surrounding bullets. f uture is weighted
less heavily as it is less important than agent survival, which is
reflected by the other values, while lose has the highest weight as
the agent’s survival is its highest priority.

f (x) = 0.5 · proдress − lose + 0.5 · sa f ety − 0.25 · f uture (1)

Additionally, the agent’s actions are constrained by setting two
agent properties: dexterity error and strategy error [9]. Dexterity
error forces the agent to repeat its actions for a number of frames.
The severity of dexterity error is modeled as a gaussian distribution
modeling the number of repeated frames. A high dexterity agent is
forced to repeat fewer frames. The strategy error reduces the time
alloted for the agent’s decision making process. A high strategy
error can force the agent to make decisions before it arrives at an
optimal choice. A high strategy agent has more time to explore its
options. By using different dexterity-strategy configurations for
the evaluating agent, it is possible to guide the evolution toward
patterns that heavily favor higher dexterity, higher strategy, or
some combination of the two. For this work, dexterity and strategy
each have 3 (low, medium, high) possible values, for a total of 9
possible dexterity-strategy configurations.

5 EXPERIMENTS
We ran 9 experiments, one for each agent configuration. These
experiments were run in parallel with the expectation that each

Dexterity Strategy
low 10 40

medium 6 60
high 2 80

Table 1: Values used for dexterity and strategy dimensions.
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Figure 4: Number of elites with fitness of 100%.

experiment would independently generate interesting and playable
levels tailored to the evaluating agent’s dexterity and strategy level.
Table 1 shows the strategy and dexterity values used during the
experiment. The dexterity values are the standard deviation of the
gaussian noise function representing the number of repeated frames.
The strategy values correspond to the amount of decision-making
time given to the agent in milliseconds for every frame.

In each experiment, we initialized the Constrained MAP-Elites
with 100 random levels. The ConstrainedMAP-Elites uses crossover
with 70% probability and mutation with 30% probability. Each map
dimension is divided into 11 values (from 0 to 10). Each cell in the
map has a population capacity of 50 chromosomes, shared between
the feasible and infeasible sub-populations. A generation consists
of 100 mating events. Each experiment was run for 24 hours.

6 RESULTS
We analyzed the number of elites generated with each generation
for the constrained MAP-Elites for every configuration. Figure 4
shows the number of elites with fitness of 100% with every genera-
tion. The figure reflects how successful the constrained MAP-Elites
has been at finding new elites with every generation. Because feasi-
ble levels are evaluated based solely on survivability, it is reasonable
to conclude that the majority of the initial population was unsur-
vivable, with survivability increasing between generations.

Due to the nature of the agent parameters, the high dexter-
ity - high strategy experiment went through fewer generations
(approximately 180) than the low dexterity - low strategy experi-
ment (approximately 1700). One generation of high dexterity - high
strategy takes substantially more time than a low dexterity - low
dexterity generation. This discrepancy is offset by the fact that high
dexterity and high strategy experiments will find survivable levels
in fewer generations, because the agents are better able to survive.
It is also worth noting that the medium dexterity - medium strategy
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(a) High Dexterity - Low Strategy
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(b) High Dexterity - Medium Strategy
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(c) High Dexterity - High Strategy

0 1 2 3 4 5 6 7 8 9 10
Value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
eq

ue
nc
y

Entropy
Risk
Distribution

(d) Medium Dexterity - Low Strategy
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(e) Medium Dexterity - Medium Strategy
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(f) Medium Dexterity - High Strategy
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(g) Low Dexterity - Low Strategy
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(h) Low Dexterity - Medium Strategy
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(i) Low Dexterity - High Strategy

Figure 5: Histograms for all the different 9 experiments after 24 hours. The x-axis represents the value of entropy, risk, or
distribution depending on which bar one looks at. The y-axis represents the frequency with which a value with the corre-
sponding value appears. That is, an orange bar at x=1 and y=0.4 would indicate that 40% of the generated levels had a risk
value of 1. The frequency values for a single evaluation dimension (entropy, risk, distribution) in a graph add up to 1.

experiment has a highly anomalous graph. Upon investigation, this
experiment was found to generate far fewer high-performing levels
than the other experiments, which is especially surprising consider-
ing it occupies none of the extremes as far as dexterity and strategy
parameters are concerned. It is possible that the population failed
to mutate favorably over its run, but the exact cause is unknown.

Figure 5 presents risk, entropy, and distribution (as discussed in
section 4.2) of elite levels generated by each experiment. An elite
level has a fitness of 1, the highest possible value, which indicates
that the evaluating agent did not die when playing it. From figure
5, one can see that high dexterity experiments generally have more
high entropy elite levels than low dexterity experiments. It seems
obvious that high dexterity agents would be able to survive levels
that would require more movement. However, this difference con-
firms that Constrained MAP-Elites is capable of generating a set
of levels that are too demanding for the low dexterity agent, but
are completable for the high dexterity agent, a set of levels which
could be considered both non-trivial and playable. In this specific

instance, any level generated by a high dexterity experiment with
an entropy greater than 5 is will likely be too demanding for a
low dexterity agent. There does not appear to be any noticeable
difference in the three metrics with respect to strategy. It is possible
that the difference between low and high strategy is too small to
create any effect or that differences in strategy impact the levels in
a way that cannot be expressed by entropy, risk, and distribution.

There are noticeable and notable flaws in the dimensions used
by this implementation of Constrained MAP-Elites. For example,
the distribution metric does not appear to be a good analog for dif-
ficulty. One would normally expect a negative correlation between
a difficulty analog and the number of survivable levels, but this is
not the case for distribution. In every one of the histograms, the
frequency of each value of distribution appear to be fairly close,
with no indication of a trend with respect to value. On the other
hand, the risk metric exhibits this behavior quite strongly. There
are far fewer survivable levels with a risk value of 3 than there are
levels with a risk value of 1. However, the range of values for risk
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appear to be largely invariant across all experiments. It is entirely
possible that risk is an effective difficulty analog that is unaffected
by dexterity and strategy. This renders it less useful than entropy
as a means of identifying more or less demanding levels in this
specific experiment.

Figure 6 shows examples from the 9 experiments. We aimed to
show levels with high entropy values to demonstrate the differences
in difficulty generated by the experiments. The top row of images
shows levels with entropy 8, the middle row shows images of levels
with entropy 6, and the bottom row shows images of levels with
entropy 4. Each of these values were chosen as they are higher than
highest entropy achieved by an elite in an experiment with a lower
dexterity. Therefore, levels in the top row should be too dexterously
demanding for medium-dexterity agents, and levels depicted in
the middle row should be too hard for low dexterity agents. Al-
though the same relation cannot be definitively stated for strategy,
visual observation and analysis shows distinctive differences in the
amount of planning required for high strategy levels versus low
strategy levels. For example, the level shown in figure 6i begins with
an empty stage, and quickly floods the left side with bullets after a
short period of time. An agent without enough decision-making
time to predict this will fail to move to the safe right side before it
becomes closed off. Similar requirements are evident in the levels
depicted by images 6f and 6c. Both levels open by splitting the level
into sections, and firing bullets into certain sections some time
later. A low strategy agent is less likely to be able to predict which
sections will be safe in the time it is allotted, and inevitably die.
This requirement is less pronounced but still present in medium
strategy levels. Images 6e and 6f show levels with somewhat jagged
walls of bullets. An agent can dodge the immediate threat by going
between bullets, only to find itself trapped in the concave structure
created by the jagged shape. From observing the images of levels
created by the experiments, we believe that strategy did have some
impact on the design of generated levels, even if the influence is
not reflected in the statistics presented by figure 5.

7 CONCLUSION
In this paper, we presented Talakat a new framework that can be
used to describe bullet hell levels. We also introduced a hybrid evo-
lutionary algorithm called Constrained MAP-Elites that combines
the MAP-Elites technique and the Feasible-Infeasible 2-Population
genetic algorithm. We showed that the Constrained MAP-Elites can
be used with Talakat to generate variations of levels. We suggest
using Constrained MAP-Elites as a technique in level generation as
game levels are very subjective. Instead of trying to define a “good”
level, one can use multiple metrics as different dimensions of the
Constrained MAP-Elites and utilize only playability for the fitness
function. From the analysis of the histograms in the 9 experiments
as well as high-performing levels, we confirmed that it is possible
to create levels of varying difficulty.

For future work, we aim to investigate the possibility of generat-
ing aesthetically pleasing bullet hell levels in addition to challenging
ones. A recent trend in bullet hell level design is the emphasis on
patterns that are thematically coherent or pleasing to the eye. It
may be possible to treat visual aesthetics as an additional dimen-
sion in the Constrained MAP-Elites or as part of a level’s fitness

function. How exactly that would be evaluated is unclear, although
machine learning looks to be a promising avenue. We also aim to
apply the Constrained MAP-Elites method to other types of games,
for example those in the General Video Game Level Generation
Framework [11]. We would also like to investigate the use of differ-
ent metrics such as the ones presented by Liapis et al [14] as the
dimensions for Constrained MAP-Elites.
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(a) High Dexterity - Low Strategy (b) High Dexterity - Medium Strategy (c) High Dexterity - High Strategy

(d) Medium Dexterity - Low Strategy (e) Medium Dexterity - Medium Strategy (f) Medium Dexterity - High Strategy

(g) Low Dexterity - Low Strategy (h) Low Dexterity - Medium Strategy (i) Low Dexterity - High Strategy

Figure 6: Examples of the generated levels for all the different 9 experiments. The high dexterity experiment images show
levelswith entropy 8, themediumdexterity experiment images show levelswith entropy 6 (except image 6e due to an anomaly),
the low dexterity images show levels with entropy 4.
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