
Tree Search vs Optimization Approaches for
Map Generation

Debosmita Bhaumik∗, Ahmed Khalifa†, Michael Cerny Green‡ and Julian Togelius§
Tandon’s School of Engineering

New York University
New York, USA

∗debosmita.bhaumik01@gmail.com,†ahmed@akhalifa.com‡mcgreentn@gmail.com, §julian@togelius.com

Abstract—Search-based procedural content generation uses
stochastic global optimization algorithms to search spaces of
game content. However, it has been found that tree search can
be competitive with evolution on certain optimization problems.
We investigate the applicability of several tree search methods to
map generation, and compare them systematically with several
optimization algorithms, including evolutionary algorithms. For
purposes of comparison, we use a simplified map generation
problem where only passable and impassable tiles exist, three
different map representations, and a set of objectives that are
representative of those commonly found in actual level generation
problem. While the results suggest that evolutionary algorithms
produce good maps faster, several tree search methods can
perform very well given sufficient time, and there are interesting
differences in the character of the generated maps depending
on the algorithm chosen, even for the same representation and
objective.

Index Terms—Procedural Content Generation, Level Genera-
tion, Map Layout, Tree Search, Optimization Algorithms

I. INTRODUCTION

Generating levels for games is a research problem with
broad relevance across most game genres and many domains
outside of games. Video games, from shooters to role-playing
games to puzzle games, need level generation in order to create
larger and more replayable games, adapt games to players,
simplify game development, and enable certain kinds of aes-
thetics. Domains such as architecture, urban planning, military
simulation and logistics need scenario and environment gen-
eration for similar reason, and these problems are often very
similar to game level generation. In reinforcement learning,
level generation allows for creating variable environments
which helps with generalization [1]. For these reasons, the
past decade has seen considerable interest in research on level
generation and other forms of procedural content generation
(PCG) from both academia and industry [2].

One particular approach to the generation of levels as well as
other types of game content is to use evolutionary algorithms
or similar global stochastic optimization algorithms to search
for good levels. This approach, called search-based PCG,
requires that the levels are represented in such a way that
the level space can be efficiently searched, and that there is a
fitness function which can reliably approximate the quality of
the level [3].

As an alternative to using evolutionary methods for PCG, it
has been suggested to use tree search methods such as Monte

Carlo Tree Search (MCTS) [4]. For example, Browne showed
that MCTS could be used to effectively search for simple
polygon shapes and the Pentominoes1 puzzle domain [5].
While it seems that both stochastic optimization and tree
search can be used for level generation (and many related
generative tasks), tree search methods are currently severely
understudied. Given the very different ways in which these
algorithm types search a space of artifacts, it stands to reason
that they should differ sharply in performance depending on
the objective and representation.

This paper presents what we consider the first systematic
comparison of tree search methods being used for level
generation and to compare its performance with evolutionary
methods. Section II reviews research with Tree Search and
Optimization, the two approaches we experiment with. We go
over each technique in detail in Sections III and IV. For ease
of analysis we consider a simplified level generation problem,
namely generating two-dimensional maps where each cell
can be either passable or impassable. Section V describes
the 3 different representations we explored with each of
the algorithms. In Section VI, we define a series of fitness
or objective functions used by all algorithms for all repre-
sentations which mirror commonly occurring considerations
when generating levels for common game genres such as
strategy games or shooters, or environments for simulations.
Our experiment results in Section VII illuminate not only
systematic differences in performance between algorithms of
different families, but also which methods and representations
work best for particular types of objectives.

II. BACKGROUND

Procedural content generation (PCG) is defined as the
automatic generation of desirable artifacts within games, be it
game levels, characters, quests and storylines, game elements
like trees and rocks, or even entire games themselves [2].
Search-based PCG is a subset of PCG methods that involves
search strategies such as tree search and optimization algo-
rithms [3] to generate the content. This section describes
previous research in the areas of tree search and evolution
as well as procedural content which can be generated using
these methods.

1http://www.ericharshbarger.org/pentominoes/



A. Tree Search

Tree search algorithms try to find solutions by starting at a
root node and expanding child nodes in a systematic way. Pop-
ular techniques include Breadth-First Search, Depth-Search
First, A*, and Monte Carlo Tree Search (MCTS) [6]. Tree
search agents are commonly used as game-playing agents, like
in Super Mario Bros (Nintendo 1985) [7], Go [8], [9], and
general video games [10] among many others.

In the area of PCG, Browne first explored this concept
by using a variant of the Upper Confidence Bound for
Trees equation (UCT) called Upper Confidence Bounds for
Graphs (UCG) [5] to develop biominoes, simple polyomino 2

shapes and the Pentominoes puzzle domain. Summerville et
al generated levels for Super Mario Bros (Nintendo 1985)
using Markov Chains where the exploration was guided using
Monte Carlo Tree Search [12]. Kartal et al used MCTS
to generate stories, taking advantage of MCTS’ ability to
successfully navigate the large search spaces associated with
possible character actions and reactions within narratives [13].
Kartel et al also used MCTS to generate Sokobon (Imabayashi
1981) levels [14]. At each node in the MCTS tree, the level
generator is given choices to take to modify the level, such
as deleting/adding objects and moving an agent around within
the level to simulate gameplay. Graves experimented using
MCTS to generate Angry Birds (Rovio Entertainment 2009)
levels [15]. At each node in the tree, the level generator can
place/remove structures/pigs or do nothing at all.

B. Optimization

Optimization algorithms are procedures which iterate until
optimal solution is found or resources are exhausted. When
used in a game-playing fashion (albeit uncommonly), these
techniques are usually formatted to create a sequence of
actions terminating at a rolling horizon. One such example is
the Rolling Horizon Evolution Algorithm (RHEA) [16], which
proved to be competitive against tree search agents in the
General Video Game Artificial Intelligence Competition [10].
Justesen et al experimented with another technique known
as online evolutionary planning in the game Hero Academy
(Robot Entertainment 2012), which is a multi-action, turn-
based, adversarial game [17].

Optimization search techniques are often popular choices
for PCG because of how easy it is to frame the PCG as
an single- or multi-point optimization problem, where the
fitness functions/objectives can be cleanly mapped to game
elements like difficulty, time, physical space, level variety, etc.
Ashlock et al. did this several ways, such as optimized puzzle
generation for different difficulties [18], [19], or stylized cel-
lular automata evolution for cave generation [20]. McGuiness
et al. created a micro-macro level generation process [21],
using a wide variety of fitness functions based on level ele-
ments. In addition to evolving level elements in GVGAI [22],
PuzzleScript [23], bullet-hell games [24], and Super Mario
Bros [25], [26] Khalifa et al. [27] offers a literature review of

2Orthogonally connected sets of squares [11]

search based level generation within puzzle games. Shaker et
al. [28] evolved levels for Cut the Rope (ZeptoLab 2010) using
constraint evolutionary search where the fitness measures the
playability using playable agents.

III. TREE SEARCH ALGORITHMS

In our experiments, we used the uninformed Breadth First
Search and Depth First Search algorithms as well as the
informed search A* and Monte Carlo Tree Search algorithms,
which are all described below.

A. Breadth First Search

A simple uninformed search algorithm, breadth first
search [6] expands by fully exploring a tree level before going
deeper by using a queuing system.

B. Depth First Search

Depth-first [6] search always expands one of the nodes at
the deepest level of the tree by using a stack system. Only
when the search hits a dead end or terminal node the search
go back and expand nodes at shallower levels.

C. A* Search

A* [6] is an informed search algorithm which uses a
heuristic function and a priority queue to select the most
promising nodes in the search tree first.

D. Monte Carlo Tree Search

MCTS [4] is a stochastic tree-search based algorithm that
creates asymmetric trees by expanding the more promising
branches of the search space using random sampling. It
consists of four phases in its iterative process: selection,
expansion, simulation, and backpropagation. During selection,
the algorithm computes which node to be selected using a
selection policy, which defines how the algorithm will select
between exploring less visited tree nodes or exploiting nodes
with higher estimated reward values, a popular policy being
UCT [29]. During expansion, a new node is added to the
tree as a child of the last selected node which is not fully
expanded. The newly created child node is simulated forward
until it reaches either some terminal state (a win or a loss) or
some pre-defined threshold (i.e 500 moves into the future). The
node’s reward value is calculated from the simulation phase’s
final state and backpropogated through the values of the any
parent nodes, from the newly created node to the tree root.
The algorithm runs in an iterative fashion, and the updated
node values from the last iteration defines how to guide the
search in the next iteration.

Our experiments use the same UCT function mentioned
above. However, rather than make C a constant, we calculate
C at every tree level using the average score of its successors.
To calculate the C constant, we calculate the average score for
each of the existing successors of that node then calculate the
difference between the maximum average scoring successor
and the minimum average scoring successor. If both averages
are the same, we add a small value to favor exploration (make
sure C is not equal to zero).



IV. OPTIMIZATION ALGORITHMS

In our experiments, we explored hill climbing, simulated
annealing, simple evolutionary strategy, and genetic algorithm,
which are descibed below.

A. Hill Climbing

The hill climber algorithm [6] is a single-point optimiza-
tion algorithm that starts with a random solution and keeps
improving the solution until a local optimal solution is found.

At each iteration, the algorithm takes the current solution
and finds all possible neighboring solutions in the search
space. It then calculates the fitness of these solutions and com-
pares them. If any neighboring state is better than the current
one, then the current state is replaced with the neighboring
state, otherwise the current state remains.

B. Simulated Annealing

Simulated Annealing [6] is a single-point global optimiza-
tion algorithm that tries to find a global optimum in the
presence of several local optima.

Like the hill climbing algorithm, the process starts with
a randomized initial state. Within each iteration, the current
selected state’s score is calculated using a heuristic function.
A neighbor of the current state is then randomly generated, and
its score is calculated. If the neighbor state is better than the
current state, it is made the current state. Otherwise the new
state is accepted with probability less than 1. The probability
is calculated by

P = exp(−d/T )

where d the absolute difference between the current states
score and the new states score and T is temperature. As the
value of T is high at the beginning, the probability of accepting
the poorer solution is higher at the start of the algorithm. After
getting the new current state the same process continues until
if finds optimal solution. Before each iteration the temperature
is calculated

T = T ∗ c

where T = temperature, c = cooling rate.

C. Evolutionary Strategy

Evolution Strategy [30] is a nature inspired multi-point
optimization algorithm. It applies selection and mutation
operators to a population, that contains solutions, to evolve
better and better solutions.

(µ/ρ+ λ)− ES

The process begins by initializing a random population of
size µ individuals and calculates the fitness the entire popula-
tion using a fitness function. λ worst individuals are removed
from the population. Then selection and mutation operators are
used on the population to evolve λ new individuals to fill the
places of eliminated individuals and keep the population size
same between generations. The ρ best individuals (selected via
rank selection) from the old population become parents to new

individuals in the new population. Each time, one individual
from the parent collection is randomly selected. Then mutation
operator is applied on the selected individual with a predefined
chance to mutate and create new offspring, and that offspring
is added to the new population. Once the new population is
completed, fitness of the new population is computed, and this
process continues until desired solution is found.

D. Genetic Algorithm

A Genetic Algorithm [30] is multi-point optimization tech-
nique inspired by the Darwinian principle of evolution. Like
evolutionary strategy, it uses nature inspired operators like
mutation and selection (with the addition of a crossover
operation) to generate high quality solutions. Starting with a
random population, it selects individuals based on fitness for
reproduction.

Within each generative iteration, the population has its
fitness calculated. The best x% individuals from the current
population are immediately inserted into the next generation
without any crossover or mutation, a process known as elitism.
For the rest of the population, two parents are selected from
the current population based on their fitness using a rank
selection algorithm. Then a single point crossover operator
is applied with y% probability for parents to create an off-
spring. A z% probability mutation operator is applied on this
offspring, which is then inserted into the new population. The
reproductive process goes on until the new population is fully
created.

V. PROBLEM REPRESENTATION

Our experiments were done using a binary map, where
0 represents empty space and 1 represents a blocked area
(or wall). Different types of map representations were used,
defined by what percentage of empty and blocked tiles they
contained. Starting point maps would be generated randomly,
given the percentage of empty space a map would contain.
The maps are used as the root node of the search algorithms.
For all algorithms, the two possible modifications are to flip
a tile (if it is a 0 change it to 1 or if it is a 1 change it to 0)
or keep the tile the same. Below the three different operations
that could be used by any of the algorithms to modify the map
are described.

A. Narrow Representation

The narrow representation approach is defined as changing
one specified tile at a time. In this approach, the tiles that the
algorithm can modify are randomly ordered, and the algorithm
can only modify the map in that particular order. For tree
search, this means that each level of the tree represents a dif-
ferent tile being modified. For optimization, this means that a
chromosome is represented as a sequence of tile modifications.
For both algorithm types, tiles can only be modified (or not)
once.



B. Wide Representation
The wide representation allows for more freedom in tile

modification order. In this representation, the algorithm itself
can decide exactly which tiles to modify in any order. For
tree search, this means that a node represents a version of
the map where a specific tile was flipped. No node may be
created that flips a tile which has already been flipped by
one of its ancestor nodes. For optimization, this means that a
chromosome is essentially a version of the map itself.

C. Turtle Graphics Representation
The turtle graphics representation draws parallels to the

Turtle Graphics module in the Logo programming language.
In this representation, algorithms are given a random initial
position within the map. They are allowed to choose how to
modify this tile, and then are given the choice to move in any
of the neighboring tiles in the four cardinal directions (unless
a direction would take them “out-of-bounds”) and modify
the new tile, and the process repeats. For tree search, this
means that a node in the tree represents a pair of directional
movement and a corresponding modification decision. For
optimization, this means that a chromosome is a sequence of
pairs containing a directional movement and the corresponding
modification decision.

VI. FITNESS/HEURISTIC FUNCTIONS

A heuristic function is a function that ranks choices based on
available information. A fitness function is a function that mea-
sure how effective a current solution is during an optimization
process. There are many heuristic/fitness functions that can be
used for level generation, such as difficulty, time, and space.
In our experiments we used three functions, chosen because
of their differing properties to show how these differences
effect algorithmic output. Each of the three functions have
a calculate to a value between 0 and 1, with the goal of any
of the algorithms to maximize this value in its final solution.

A. Number of empty tiles
This function measures the number of empty tiles in a given

map.

V =


(e/r1) if e<r1
1 if r1 ≤ e ≤ r2

(t− e)/(t− r2) if e>r2
(1)

where e = number of empty tiles in map, t = total number of
tiles in map, r1,r2 = a given acceptable range, and r1 <r2.

B. Path length
In this function, the length of the longest path in the map

is calculated. The path between every pair of points that can
possibly exist in the map is calculated, with the longest path
defining the value.

V =

{
p/n if p <n
1 if p ≥ n

(2)

where p = length of longest path, n = a predefined ”goal
length” number

C. Connectivity

The connectivity function measures how well-connected
empty spaces are to each other. There is inverse relationship
between how well-connected a map is and how many uncon-
nected empty regions exist.

V = 1/r (3)

where r = the number of disconnected empty regions.

VII. EXPERIMENTS

Each algorithm ran 3000 times for each representation and
each fitness/heuristic combination using three different empty
tile initialization percentages of 25%, 50%, and 75%, for a
total of 72 different experimental configurations (the initial-
ization conditions are aggregated for a given configuration).
The empty tile initialization percentages are the probabilities
of a tile being empty upon map initialization. For example:
if empty tile initialization percentage is equal 25%, it means
each tile has a 25% chance of being empty. We use different
percentages to make sure that non of the algorithms get stuck
due to bad starting position. As a final configuration note, each
configuration was run on an High Performance Computing
Node with an Intel Xeon E-2690 Processor.

Every generation takes at most 60 seconds to generate maps
of size 10x10. If no final solution is found within that time,
the algorithm stops and returns the best found map. Different
parameters are used for each of the fitness/heuristic functions.
The empty tiles function tries to find maps in the range
between 45 and 65 empty tiles, the path length function tries
to find maps with the longest path greater than or equal to
26, while the connectivity function tries to find maps where
all empty tiles of the map are connected to each other using
orthogonal directions.

We tuned the parameters of each algorithm to make sure
they are running efficiently. We used a changing C for the
MCTS algorithm (described in Section III-D), a mutation rate
of 5% for the hill climber, a cooling rate of 0.99 for the
simulated annealing, a µ of 10 and λ of 20 with 5% mutation
rate for evolutionary strategy, and a population of size 200
with crossover rate 80% and mutation rate equal to 5% and
0.5% elitism for the genetic algorithm.

In the following subsections, we compare all 72 experiment
configurations over all possible combinations of the eight al-
gorithms using the various representations and heuristic/fitness
functions across different performance measures. We also
compare the generated maps using expressive range analysis
techniques to show the regions each algorithm is covering.

A. Performance Comparison

In figure 1, we compare the ability of each algorithm to
find an optimal solution. It was expected that ES and GA
outperforms other algorithms due to the multiple starting
points (chromosomes) compared to single starting point for
tree search algorithms, hill climber, and simulated annealing.
A surprising observation is that MCTS performs worse on
wide representation compared to other tree search algorithms,



BFS DFS AStar MCTS HC SA ES GA
0.0

0.2

0.4

0.6

0.8

1.0

pe
rc

en
ta

ge
 o

f s
ol

ut
io

ns

Narrow
Wide
Turtle

(a) Empty Tiles Heuristic/Fitness

BFS DFS AStar MCTS HC SA ES GA
0.0

0.2

0.4

0.6

0.8

1.0

pe
rc

en
ta

ge
 o

f s
ol

ut
io

ns

Narrow
Wide
Turtle

(b) Path Length Heuristic/Fitness

BFS DFS AStar MCTS HC SA ES GA
0.0

0.2

0.4

0.6

0.8

1.0

pe
rc

en
ta

ge
 o

f s
ol

ut
io

ns

Narrow
Wide
Turtle

(c) Connectivity Heuristic/Fitness

Fig. 1: Solution Percentage

as MCTS usually handles high branching factors better. An-
other surprising note is that DFS algorithm perform better
than BFS algorithm in almost all experiments. On the topic of
comparison between single point algorithms, A* and MCTS
algorithms find more solutions in most of the cases when
compared to hill climber and simulated annealing algorithms.
One last observation is that the narrow representation seems
to be the easiest of all problem representations to be explored
for most of the algorithms, an exception being when using
Path Length as heuristic/fitness function.

To understand more about why MCTS performs poorly on
wide representation compared to other tree search algorithms,
we decided to analyze the maximum depth each of the tree
search algorithm is able to reach. Figure 2 shows the maximum
depth reached for each of the tree search algorithms. It is
obvious that MCTS on wide representation does not expand
deep enough in the tree to find a solution. Similarly we can
see that DFS is able to go far deeper in the tree, giving it an
advantage over BFS as most of the goal maps can be found
on a deeper level in the tree.

The last performance metric we analyze is time perfor-
mance. Figure 3 shows the average time in seconds that each
algorithm takes to find a solution. The figure shows that path
length heuristic/fitness takes the longest time to find solutions
compared to the other two heuristic/fitness, while empty tile
heuristic/fitness almost take no time to find solutions. The time
needed to compute the path length heuristic/fitness is greater
than the other two heuristics/fitness, which explains part of
this. Another reason is that increasing the path length might
involve including either solid or empty tiles in very particular
locations which may not be near local optima. Compared to the
empty tile heuristic/fitness, which only cares about increasing
the number of empty tiles to the grid, and the connectivity
heuristic/fitness, which only cares about adding empty tiles in
the correct locations to connect different regions, one could
see why the path length heuristic might take more time.

B. Expressive Range Analysis

In this subsection, we analyze generated content using
expressive range analysis [31]. For all the generated maps
using a certain heuristic/fitness function, we measure the other
two heuristic/fitness functions and plot a histogram of their
distribution.

Figure 4 shows the expressive range analysis for all algo-
rithms when using the empty tiles heuristic/fitness function.
Most of the algorithms tend to have similar generation styles
except for BFS using the narrow representation (figure 5a),
hill climber with the wide representation (figure 5b), and DFS
with the turtle graphics representation (figure 5c). The BFS
generated maps with the narrow representation are more con-
nected and have longer paths than most of the other algorithms
on the narrow representation, while the hill climber generated
maps are more connected and have shorter-to-medium sized
paths on the wide representation. Similar to the BFS, the DFS
generated maps are more connected with longer paths on the
turtle graphic representation.

Figure 6 displays the expressive range analysis for all the
algorithms when using path length heuristic/fitness function. In
the narrow representation, BFS, DFS, and A* algorithm have
different maps compared to the rest of the algorithms as they
have more empty tiles with more connectivity compared to the
rest of the algorithms (figure 7a). This is likely due to the fact
that these tree search algorithms are visiting tiles in a fixed
order compared to optimization algorithms and the random
rollouts of the MCTS algorithm. In the wide representation,
almost all the algorithms generate similar maps with high
connectivity and high number of empty tiles except for the
simulated annealing algorithm as the generated maps have the
opposite features (figure 7b). In the turtle graphics representa-
tion, The graphs show that the tree search algorithms generate
more connected maps with more empty tiles compared to the
optimization algorithms (figure 7c). Also, one can see that the
multi-point optimization algorithms have less empty tiles with
less connectivity compared to the single point optimization
algorithms.

Figure 8 shows the expressive range analysis for all the
algorithms when using connectivity heuristic/fitness function.
Using the narrow representation, the tree search algorithms
have more empty tiles with shorter path lengths (figure 9a).
Similar to the previous expressive range on wide representa-
tion, only simulated annealing algorithm has a slight difference
from all the other algorithms (figure 9b), where the generated
maps have slightly longer paths. In the turtle graphic repre-
sentation, tree search algorithm maps have more empty tiles
but equal path lengths to the rest of the algorithms (figure 9c).



BFS DFS AStar MCTS
100

101

102

103

104

Av
er

ag
e 

De
pt

h

Narrow
Wide
Turtle

(a) Empty Tiles Heuristic/Fitness

BFS DFS AStar MCTS

100

101

102

103

104

Av
er

ag
e 

De
pt

h

Narrow
Wide
Turtle

(b) Path Length Heuristic/Fitness

BFS DFS AStar MCTS

101

102

103

104

Av
er

ag
e 

De
pt

h

Narrow
Wide
Turtle

(c) Connectivity Heuristic/Fitness

Fig. 2: Tree Depth

BFS DFS AStar MCTS HC SA ES GA
0

5

10

15

20

25

30

Av
er

ag
e 

Ti
m

e

Narrow
Wide
Turtle

(a) Empty Tiles Heuristic/Fitness

BFS DFS AStar MCTS HC SA ES GA
0

5

10

15

20

25

30

Av
er

ag
e 

Ti
m

e

Narrow
Wide
Turtle

(b) Path Length Heuristic/Fitness

BFS DFS AStar MCTS HC SA ES GA
0

5

10

15

20

25

30

Av
er

ag
e 

Ti
m

e

Narrow
Wide
Turtle

(c) Connectivity Heuristic/Fitness

Fig. 3: Time to find a solution

N
ar

ro
w



Re
pr

es
en

ta
tio

n
W

id
e


Re
pr

es
en

ta
tio

n
Tu

rtl
e 

G
ra

ph
ic

s

Re

pr
es

en
ta

tio
n

(a) Narrow representation

N
ar

ro
w



Re
pr

es
en

ta
tio

n
W

id
e


Re
pr

es
en

ta
tio

n
Tu

rtl
e 

G
ra

ph
ic

s

Re

pr
es

en
ta

tio
n

(b) Wide representation

N
ar

ro
w



Re
pr

es
en

ta
tio

n
W

id
e


Re
pr

es
en

ta
tio

n
Tu

rtl
e 

G
ra

ph
ic

s

Re

pr
es

en
ta

tio
n

(c) Turtle graphics representation

Fig. 4: Expressive range analysis for empty tiles heuris-
tic/fitness.

VIII. CONCLUSION

This paper introduces the idea of using a number of tree
search algorithms for content generation, specifically for map
generation. We compare four different tree search algorithms
(BFS, DFS, A*, and MCTS) against four different opti-
mization algorithms (HC, SA, ES, and GA) which are used
commonly in map layout generation. We test these algorithms
using three different problem representations (narrow, wide,
and turtle graphic representation) to see how each algorithm
performs using different representations. We also use three
different heuristic/fitness functions to guide the algorithms

(a) BFS generated maps using narrow representation compared to
other generated maps.

(b) Hill climber generated maps using wide representation com-
pared to other generated maps.

(c) DFS generated maps using turtle graphics representation
compared to other generated maps.

Fig. 5: Generated maps using empty tiles heuristic/fitness
function.

in finding a solution. These functions greatly differ between
each other: the empty tile function is directly affected by any
tile change, while path length and connectivity functions are
indirectly affected depending particularly on which tiles are
changed.



N
ar

ro
w



Re
pr

es
en

ta
tio

n
W

id
e


Re
pr

es
en

ta
tio

n
Tu

rtl
e 

G
ra

ph
ic

s

Re

pr
es

en
ta

tio
n

(a) Narrow representation

N
ar

ro
w



Re
pr

es
en

ta
tio

n
W

id
e


Re
pr

es
en

ta
tio

n
Tu

rtl
e 

G
ra

ph
ic

s

Re

pr
es

en
ta

tio
n

(b) Wide representation

N
ar

ro
w



Re
pr

es
en

ta
tio

n
W

id
e


Re
pr

es
en

ta
tio

n
Tu

rtl
e 

G
ra

ph
ic

s

Re

pr
es

en
ta

tio
n

(c) Turtle graphics representation

Fig. 6: Expressive range analysis for path length heuris-
tic/fitness.

(a) BFS/DFS/A* generated maps using narrow representation
compared to the rest of the algorithms generated maps.

(b) Simulated annealing generated maps using wide representation
compared to the rest of the algorithms generated maps.

(c) Tree search algorithms generated maps using turtle graphics
representation compared to the optimization algorithms generated
maps.

Fig. 7: Generated maps using path length heuristic/fitness
function.

All 72 experimental configurations were ran 3000 times
each using different initialized map ratios. Each experiment
took at most 60 seconds. The results showed that A* and
MCTS are a worthy adversary to single point optimization
(HC and SA) but not as powerful as multi point optimization
(ES and GA). One interesting result was that MCTS does
not perform well on wide representation, especially because
MCTS is usually able to handle problems with branching
factors. By analyzing the maximum depth that MCTS was
able to reach, we found that MCTS is not reaching deep in
the tree where most of the solutions exist. That is also the
same reason why DFS works better than BFS in almost all the

N
ar

ro
w



Re
pr

es
en

ta
tio

n
W

id
e


Re
pr

es
en

ta
tio

n
Tu

rtl
e 

G
ra

ph
ic

s

Re

pr
es

en
ta

tio
n

(a) Narrow representation

N
ar

ro
w



Re
pr

es
en

ta
tio

n
W

id
e


Re
pr

es
en

ta
tio

n
Tu

rtl
e 

G
ra

ph
ic

s

Re

pr
es

en
ta

tio
n

(b) Wide representation

N
ar

ro
w



Re
pr

es
en

ta
tio

n
W

id
e


Re
pr

es
en

ta
tio

n
Tu

rtl
e 

G
ra

ph
ic

s

Re

pr
es

en
ta

tio
n

(c) Turtle graphics representation

Fig. 8: Expressive range analysis for connectivity heuris-
tic/fitness.

(a) Tree search algorithms’ generated maps using narrow rep-
resentation compared to the optimization algorithms’ generated
maps.

(b) Simulated annealing generated maps using wide representation
compared to the rest of the algorithms generated maps.

(c) Tree search algorithms generated maps using turtle graphics
representation compared to the optimization algorithms generated
maps.

Fig. 9: Generated maps using connectivity heuristic/fitness
function.

representations. By comparing the generation time, we notice
that the path length heuristic/fitness function is the slowest
of all the techniques with fewer solutions, suggesting that it
is a more difficult goal to reach compared to the other two
functions. It is surprising that the simulated annealing was the
fastest to find solutions using the path length fitness function
with a high percentage of success to find a solution when
compared to ES and GA.

We display the expressive range of each of these experi-
mental configurations and describe how tree search algorithms
have their own generative styles compared to optimization



algorithms. BFS and DFS usually find solutions that are
totally different from the rest due to the different way of
node expansion (not following the heuristic function). Notably,
some of the single-point optimization algorithmic styles differ
from the multi-point algorithms.

To conclude, we suggest that using tree search algorithms
are a good alternative to generate content as shown in this
work and previous work [5], [12]–[15]. We would like to
take this work further and investigate multi-point tree search
algorithms, treating the domain as a graph with multiple
starting points similar to the work by Browne [5]. Another
direction is to test these techniques on different domains
and generative problems and see how well they translate
(narrative generation, character generation, sprite generation,
rule generation, etc). Lastly, we want to experiment with the
relationship between different map initialization methods and
heuristic/fitness functions while applying it on an actual game.

ACKNOWLEDGEMENTS

Ahmed Khalifa acknowledges the financial support from
NSF grant (Award number 1717324 - “RI: Small: General
Intelligence through Algorithm Invention and Selection.”).
Michael Cerny Green acknowledges the financial support of
the SOE Fellowship from NYU Tandon School of Engineer-
ing.

REFERENCES

[1] N. Justesen, R. R. Torrado, P. Bontrager, A. Khalifa, J. Togelius, and
S. Risi, “Illuminating generalization in deep reinforcement learning
through procedural level generation,” in NeurIPS Workshop on Deep
Reinforcement Learning, 2018.

[2] N. Shaker, J. Togelius, and M. J. Nelson, Procedural content generation
in games. Springer, 2016.

[3] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation: A taxonomy and survey,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 3,
no. 3, pp. 172–186, 2011.

[4] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of monte carlo tree search methods,” IEEE Transactions on
Computational Intelligence and AI in games, vol. 4, no. 1, pp. 1–43,
2012.

[5] C. Browne, “Uct for pcg,” in 2013 IEEE Conference on Computational
Inteligence in Games (CIG). IEEE, 2013, pp. 1–8.

[6] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach.
Malaysia; Pearson Education Limited,, 2016.

[7] J. Togelius, S. Karakovskiy, and R. Baumgarten, “The 2009 mario ai
competition,” in IEEE Congress on Evolutionary Computation. IEEE,
2010, pp. 1–8.

[8] S. Gelly, Y. Wang, R. Munos, and O. Teytaud, “Modification of {UCT}
with patterns in {M} onte-{C} arlo {G} o,” 2006.

[9] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

[10] D. Perez-Liebana, S. Samothrakis, J. Togelius, T. Schaul, and S. M.
Lucas, “General video game ai: Competition, challenges and opportu-
nities,” in Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[11] S. W. Golomb, Polyominoes: puzzles, patterns, problems, and packings.
Princeton University Press, 1996, vol. 16.

[12] A. J. Summerville, S. Philip, and M. Mateas, “Mcmcts pcg 4 smb:
Monte carlo tree search to guide platformer level generation,” in Eleventh
Artificial Intelligence and Interactive Digital Entertainment Conference,
2015.

[13] B. Kartal, J. Koenig, and S. J. Guy, “Generating believable stories in
large domains,” in Ninth Artificial Intelligence and Interactive Digital
Entertainment Conference, 2013.

[14] B. Kartal, N. Sohre, and S. Guy, “Generating sokoban puzzle game levels
with monte carlo tree search,” in The IJCAI-16 Workshop on General
Game Playing, 2016, p. 47.

[15] M. Graves et al., “Procedural content generation of angry birds levels
using monte carlo tree search,” Ph.D. dissertation, 2016.

[16] D. Perez, S. Samothrakis, S. Lucas, and P. Rohlfshagen, “Rolling horizon
evolution versus tree search for navigation in single-player real-time
games,” in Proceedings of the 15th annual conference on Genetic and
evolutionary computation. ACM, 2013, pp. 351–358.

[17] N. Justesen, T. Mahlmann, and J. Togelius, “Online evolution for multi-
action adversarial games,” in European Conference on the Applications
of Evolutionary Computation. Springer, 2016, pp. 590–603.

[18] D. Ashlock, “Automatic generation of game elements via evolution,” in
Computational Intelligence and Games (CIG), 2010 IEEE Symposium
on. IEEE, 2010, pp. 289–296.

[19] D. Ashlock, C. Lee, and C. McGuinness, “Search-based procedural
generation of maze-like levels,” in IEEE Transactions on Computational
Intelligence and AI in Games. IEEE, 2011, pp. 260–273.

[20] D. Ashlock, “Evolvable fashion-based cellular automata for generating
cavern systems,” in Computational Intelligence and Games (CIG), 2015
IEEE Conference on. IEEE, 2015, pp. 306–313.

[21] C. McGuinness and D. Ashlock, “Decomposing the level generation
problem with tiles,” in Evolutionary Computation (CEC), 2011 IEEE
Congress on. IEEE, 2011, pp. 849–856.

[22] A. Khalifa, D. Perez-Liebana, S. M. Lucas, and J. Togelius, “General
video game level generation,” in Proceedings of the Genetic and
Evolutionary Computation Conference 2016. ACM, 2016, pp. 253–
259.

[23] A. Khalifa and M. Fayek, “Automatic puzzle level generation: A general
approach using a description language,” in Computational Creativity and
Games Workshop, 2015.

[24] A. Khalifa, S. Lee, A. Nealen, and J. Togelius, “Talakat: Bullet hell
generation through constrained map-elites,” in Proceedings of The
Genetic and Evolutionary Computation Conference. ACM, 2018.

[25] M. C. Green, A. Khalifa, G. A. Barros, A. Nealen, and J. Togelius,
“Generating levels that teach mechanics,” in Proceedings of the 13th
International Conference on the Foundations of Digital Games. ACM,
2018, p. 55.

[26] A. Khalifa, M. Green, G. A. Barros, and J. Togelius, “Intentional com-
putational level design,” in Proceedings of The Genetic and Evolutionary
Computation Conference. ACM, 2019.

[27] A. Khalifa and M. Fayek, “Literature review of
procedural content generation in puzzle games,”
http://www.akhalifa.com/documents/LiteratureReviewPCG.pdf, 2015.

[28] N. Shaker, M. Shaker, and J. Togelius, “Evolving playable content for
cut the rope through a simulation-based approach.” in AIIDE, 2013.

[29] L. Kocsis, C. Szepesvári, and J. Willemson, “Improved monte-carlo
search,” Univ. Tartu, Estonia, Tech. Rep, vol. 1, 2006.

[30] J. Brownlee, Clever Algorithms: Nature-Inspired Programming Recipes,
2011.

[31] G. Smith and J. Whitehead, “Analyzing the expressive range of a level
generator,” in Proceedings of the 2010 Workshop on Procedural Content
Generation in Games. ACM, 2010, p. 4.


